Matches in SemOpenAlex for { <https://semopenalex.org/work/W3161946347> ?p ?o ?g. }
- W3161946347 endingPage "110578" @default.
- W3161946347 startingPage "110578" @default.
- W3161946347 abstract "Materials stability is a fundamental parameter that should be considered in almost all materials researches. In this manuscript, we employ machine learning techniques and symbolic regression to investigate material stabilities, focusing on the An+1Bn-type prototypical MXenes. Based on a small dataset, the machine learning algorithms including Random forest, KNN, Logistic regression, SVM and GaussianNB are investigated to evaluate the MXene stabilities, with the SVM algorithm achieving the best accuracy for the classification purpose. More importantly, the symbolic regression is verified to be a viable method to identify proper descriptors and construct new descriptors that correlate with the MXene material stability. This study demonstrates the viability of the machine learning and symbolic regression methods to classify materials and describe materials stability." @default.
- W3161946347 created "2021-05-24" @default.
- W3161946347 creator A5032610897 @default.
- W3161946347 creator A5040524687 @default.
- W3161946347 date "2021-08-01" @default.
- W3161946347 modified "2023-10-15" @default.
- W3161946347 title "Machine learning and symbolic regression investigation on stability of MXene materials" @default.
- W3161946347 cites W1976492731 @default.
- W3161946347 cites W1980197072 @default.
- W3161946347 cites W2015563133 @default.
- W3161946347 cites W2067910821 @default.
- W3161946347 cites W2099357101 @default.
- W3161946347 cites W2128129463 @default.
- W3161946347 cites W2142009706 @default.
- W3161946347 cites W2167504056 @default.
- W3161946347 cites W2259650972 @default.
- W3161946347 cites W2278970271 @default.
- W3161946347 cites W2408002305 @default.
- W3161946347 cites W2482083820 @default.
- W3161946347 cites W2567511061 @default.
- W3161946347 cites W2575735654 @default.
- W3161946347 cites W2592422623 @default.
- W3161946347 cites W2599237930 @default.
- W3161946347 cites W2620687153 @default.
- W3161946347 cites W2752421073 @default.
- W3161946347 cites W2767101995 @default.
- W3161946347 cites W2785060548 @default.
- W3161946347 cites W2795560075 @default.
- W3161946347 cites W2888395196 @default.
- W3161946347 cites W2895433686 @default.
- W3161946347 cites W2899260625 @default.
- W3161946347 cites W2908202403 @default.
- W3161946347 cites W2920535269 @default.
- W3161946347 cites W2944944703 @default.
- W3161946347 cites W2947518431 @default.
- W3161946347 cites W2961421843 @default.
- W3161946347 cites W2971521778 @default.
- W3161946347 cites W2974398461 @default.
- W3161946347 cites W2998428519 @default.
- W3161946347 cites W2999916958 @default.
- W3161946347 cites W3001867497 @default.
- W3161946347 cites W3013469885 @default.
- W3161946347 cites W3016810874 @default.
- W3161946347 cites W3029134055 @default.
- W3161946347 cites W3042344738 @default.
- W3161946347 cites W3085860626 @default.
- W3161946347 cites W4376848439 @default.
- W3161946347 doi "https://doi.org/10.1016/j.commatsci.2021.110578" @default.
- W3161946347 hasPublicationYear "2021" @default.
- W3161946347 type Work @default.
- W3161946347 sameAs 3161946347 @default.
- W3161946347 citedByCount "24" @default.
- W3161946347 countsByYear W31619463472021 @default.
- W3161946347 countsByYear W31619463472022 @default.
- W3161946347 countsByYear W31619463472023 @default.
- W3161946347 crossrefType "journal-article" @default.
- W3161946347 hasAuthorship W3161946347A5032610897 @default.
- W3161946347 hasAuthorship W3161946347A5040524687 @default.
- W3161946347 hasConcept C105795698 @default.
- W3161946347 hasConcept C110332635 @default.
- W3161946347 hasConcept C112972136 @default.
- W3161946347 hasConcept C119857082 @default.
- W3161946347 hasConcept C12267149 @default.
- W3161946347 hasConcept C151956035 @default.
- W3161946347 hasConcept C152877465 @default.
- W3161946347 hasConcept C154945302 @default.
- W3161946347 hasConcept C169258074 @default.
- W3161946347 hasConcept C171250308 @default.
- W3161946347 hasConcept C192562407 @default.
- W3161946347 hasConcept C199360897 @default.
- W3161946347 hasConcept C2776400721 @default.
- W3161946347 hasConcept C2776453213 @default.
- W3161946347 hasConcept C2780801425 @default.
- W3161946347 hasConcept C33923547 @default.
- W3161946347 hasConcept C41008148 @default.
- W3161946347 hasConcept C83546350 @default.
- W3161946347 hasConceptScore W3161946347C105795698 @default.
- W3161946347 hasConceptScore W3161946347C110332635 @default.
- W3161946347 hasConceptScore W3161946347C112972136 @default.
- W3161946347 hasConceptScore W3161946347C119857082 @default.
- W3161946347 hasConceptScore W3161946347C12267149 @default.
- W3161946347 hasConceptScore W3161946347C151956035 @default.
- W3161946347 hasConceptScore W3161946347C152877465 @default.
- W3161946347 hasConceptScore W3161946347C154945302 @default.
- W3161946347 hasConceptScore W3161946347C169258074 @default.
- W3161946347 hasConceptScore W3161946347C171250308 @default.
- W3161946347 hasConceptScore W3161946347C192562407 @default.
- W3161946347 hasConceptScore W3161946347C199360897 @default.
- W3161946347 hasConceptScore W3161946347C2776400721 @default.
- W3161946347 hasConceptScore W3161946347C2776453213 @default.
- W3161946347 hasConceptScore W3161946347C2780801425 @default.
- W3161946347 hasConceptScore W3161946347C33923547 @default.
- W3161946347 hasConceptScore W3161946347C41008148 @default.
- W3161946347 hasConceptScore W3161946347C83546350 @default.
- W3161946347 hasFunder F4320321001 @default.
- W3161946347 hasLocation W31619463471 @default.
- W3161946347 hasOpenAccess W3161946347 @default.
- W3161946347 hasPrimaryLocation W31619463471 @default.