Matches in SemOpenAlex for { <https://semopenalex.org/work/W3161954179> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W3161954179 endingPage "1486" @default.
- W3161954179 startingPage "1486" @default.
- W3161954179 abstract "Abstract Background: The presentation of antigens by Major Histocompatibility Complex Class II (MHC-II) is an essential component of adaptive immune response. By combining whole exome sequencing and tandem mass spectrometry (LC-MS/MS), we recently demonstrated that MHC-II presented immunoglobulin neoantigens are common recognition targets in mantle cell lymphoma (MCL) [Khodadoust et al 2017 Nature]. While patient proteomic data can be difficult to obtain, computational methods can learn from these data to predict cancer neoantigen presentation informing personalized immunotherapeutic strategies across cancers. Unfortunately, current tools for predicting peptide presentation by MHC-II have major limitations due to the complexity of presentation pathways and the promiscuity of binding motifs for MHC-II alleles. We hypothesized that a method trained on naturally presented MHC-II ligandomes integrating both sequence and gene expression features could better predict presentation of tumor neoantigens. Method: We trained a recurrent neural network (RNN) model on 19 mantle cell lymphoma MHC-II ligandomes (>30,000 sequences) to build MARIA (MHC Analysis with RNN Integrated Architecture). MARIA is a deep learning algorithm that predicts peptide MHC-II presentation probabilities based on peptide sequences, neighboring context in each protein (cleavage signatures), patient MHC alleles, and gene expression levels. We evaluated the performance of MARIA with 10-fold cross-validation and also using held out data from both B-cell lymphoma and melanoma patients. Results: Gene expression levels and cleavage signatures of corresponding peptides have a profound influence on MHC-II peptide presentation but are not incorporated in standard prediction algorithms (Figure 1a). MARIA presentation scores achieved over 0.93 AUC under cross-validation on validated MHC-II ligands from our lymphoma dataset (Figure 1a). In comparison, predicted binding scores alone gave only 0.70 AUC, and conventional shallow neural network models (e.g., NetMHCIIpan3.1) gave 0.87 AUC when trained on the same dataset. When tested on held-out lymphoma and melanoma empirical ligandome data, MARIA sustained over 70% sensitivity with 90% specificity for detection of MHC-II ligands. Though MARIA was exclusively trained on non-immunoglobulin human sequences, it correctly predicted IgM presentation hot spots discovered by direct antigen presentation profiling using LC-MS/MS (Figure 1b), as well as hotspots in alpha-gliadin, a known Celiac Disease antigen, in an HLA-restricted fashion. Conclusion: MARIA enables high throughput antigen screening with higher accuracy than other methods. It can be applied to immunology applications such as vaccine design, patient profiling, and neo- and auto-antigen identification. Figure 1. Performance of MARIA predicting human MHC-II peptide presentation. a) Five different predictors of MHC-II peptide presentation were used to differentiate 3290 validation MHC-II peptides from 7500 random human decoy peptides. MARIA scores that incorporate sequence information, gene expression levels, binding scores, and cleavage signatures outperformed other methods with an aggregate AUC=0.93. b) MARIA predicted MHC-II presentation of lymphoma IgM (left) compared to experimentally recovered MHC-II peptides (right). MARIA highlighted MHC-II presentation hot spots on IgM FR3 and CH2 regions, consistent with the experimental heat-map (Spearman R=0.63, p-value Download : Download high-res image (139KB) Download : Download full-size image Figure 1 . Disclosures Davis: Vir Biotechnology: Consultancy, Equity Ownership, Honoraria; PACT Bio: Consultancy, Equity Ownership, Honoraria; Adicet Inc: Consultancy, Equity Ownership, Honoraria; Chuga Pharmabody: Consultancy, Honoraria; Amgen: Consultancy, Research Funding; Atreca: Consultancy, Equity Ownership, Honoraria; Juno: Consultancy, Equity Ownership, Honoraria. Altman: Karius: Consultancy; Personalis: Consultancy; Pfizer: Consultancy." @default.
- W3161954179 created "2021-05-24" @default.
- W3161954179 creator A5003812677 @default.
- W3161954179 creator A5005370974 @default.
- W3161954179 creator A5025539602 @default.
- W3161954179 creator A5028206166 @default.
- W3161954179 creator A5042893672 @default.
- W3161954179 creator A5046441556 @default.
- W3161954179 creator A5051179946 @default.
- W3161954179 creator A5057879662 @default.
- W3161954179 creator A5083342021 @default.
- W3161954179 creator A5084043782 @default.
- W3161954179 creator A5089313267 @default.
- W3161954179 date "2017-12-07" @default.
- W3161954179 modified "2023-09-30" @default.
- W3161954179 title "Maria: Accurate Prediction of MHC-II Peptide Presentation with Deep-Learning and Lymphoma Patient MHC-II Ligandome" @default.
- W3161954179 doi "https://doi.org/10.1182/blood.v130.suppl_1.1486.1486" @default.
- W3161954179 hasPublicationYear "2017" @default.
- W3161954179 type Work @default.
- W3161954179 sameAs 3161954179 @default.
- W3161954179 citedByCount "0" @default.
- W3161954179 crossrefType "journal-article" @default.
- W3161954179 hasAuthorship W3161954179A5003812677 @default.
- W3161954179 hasAuthorship W3161954179A5005370974 @default.
- W3161954179 hasAuthorship W3161954179A5025539602 @default.
- W3161954179 hasAuthorship W3161954179A5028206166 @default.
- W3161954179 hasAuthorship W3161954179A5042893672 @default.
- W3161954179 hasAuthorship W3161954179A5046441556 @default.
- W3161954179 hasAuthorship W3161954179A5051179946 @default.
- W3161954179 hasAuthorship W3161954179A5057879662 @default.
- W3161954179 hasAuthorship W3161954179A5083342021 @default.
- W3161954179 hasAuthorship W3161954179A5084043782 @default.
- W3161954179 hasAuthorship W3161954179A5089313267 @default.
- W3161954179 hasConcept C147483822 @default.
- W3161954179 hasConcept C170627219 @default.
- W3161954179 hasConcept C203014093 @default.
- W3161954179 hasConcept C207936829 @default.
- W3161954179 hasConcept C2776090121 @default.
- W3161954179 hasConcept C2777525834 @default.
- W3161954179 hasConcept C2779338263 @default.
- W3161954179 hasConcept C70721500 @default.
- W3161954179 hasConcept C83464605 @default.
- W3161954179 hasConcept C86803240 @default.
- W3161954179 hasConcept C8891405 @default.
- W3161954179 hasConceptScore W3161954179C147483822 @default.
- W3161954179 hasConceptScore W3161954179C170627219 @default.
- W3161954179 hasConceptScore W3161954179C203014093 @default.
- W3161954179 hasConceptScore W3161954179C207936829 @default.
- W3161954179 hasConceptScore W3161954179C2776090121 @default.
- W3161954179 hasConceptScore W3161954179C2777525834 @default.
- W3161954179 hasConceptScore W3161954179C2779338263 @default.
- W3161954179 hasConceptScore W3161954179C70721500 @default.
- W3161954179 hasConceptScore W3161954179C83464605 @default.
- W3161954179 hasConceptScore W3161954179C86803240 @default.
- W3161954179 hasConceptScore W3161954179C8891405 @default.
- W3161954179 hasLocation W31619541791 @default.
- W3161954179 hasOpenAccess W3161954179 @default.
- W3161954179 hasPrimaryLocation W31619541791 @default.
- W3161954179 hasRelatedWork W1843530687 @default.
- W3161954179 hasRelatedWork W1966887504 @default.
- W3161954179 hasRelatedWork W2001635766 @default.
- W3161954179 hasRelatedWork W2073915292 @default.
- W3161954179 hasRelatedWork W2081645339 @default.
- W3161954179 hasRelatedWork W2083753580 @default.
- W3161954179 hasRelatedWork W2271674799 @default.
- W3161954179 hasRelatedWork W2401249270 @default.
- W3161954179 hasRelatedWork W2404377037 @default.
- W3161954179 hasRelatedWork W2552513321 @default.
- W3161954179 hasRelatedWork W2725887556 @default.
- W3161954179 hasRelatedWork W2760759644 @default.
- W3161954179 hasRelatedWork W2887880634 @default.
- W3161954179 hasRelatedWork W2951933297 @default.
- W3161954179 hasRelatedWork W2978364916 @default.
- W3161954179 hasRelatedWork W2980165676 @default.
- W3161954179 hasRelatedWork W3011676284 @default.
- W3161954179 hasRelatedWork W598731556 @default.
- W3161954179 hasRelatedWork W2905668726 @default.
- W3161954179 hasRelatedWork W2976994834 @default.
- W3161954179 hasVolume "130" @default.
- W3161954179 isParatext "false" @default.
- W3161954179 isRetracted "false" @default.
- W3161954179 magId "3161954179" @default.
- W3161954179 workType "article" @default.