Matches in SemOpenAlex for { <https://semopenalex.org/work/W3162081704> ?p ?o ?g. }
- W3162081704 endingPage "102636" @default.
- W3162081704 startingPage "102636" @default.
- W3162081704 abstract "Property valuation contributes significantly to market economic activities, while it has been continuously questioned on its low transparency, inaccuracy and inefficiency. With Big Data applications in real estate domain growing fast, computer-aided valuation systems such as AI-enhanced automated valuation models (AVMs) have the potential to address these issues. While a plethora of research has focused on improving predictive performance of AVMs, little effort has been made on information requirements for valuation models. As the amount of data in BIM is rising exponentially, the value-relevant design information has not been widely utilized for property valuation. This paper presents a system that leverages a holistic data interpretation, improves information exchange between AEC projects and property valuation, and automates specific workflows for property valuation. A mixed research method was adopted combining the archival literature research, qualitative and quantitative data analysis. A BIM and Machine learning (ML) integration framework for automated property valuation was proposed which contains a fundamental database interpretation, an IFC-based information extraction and an automated valuation model based on genetic algorithm optimized machine learning (GA-GBR). The main findings indicated: (1) Partial information requirements can be extracted from BIM models, (2) Property valuation can be performed in a more accurate and efficient way. This research contributes to managing information exchange between AEC projects and property valuation and supporting automated property valuation. It was suggested that the infusion of BIM, ML and other emerging digital technologies might add values to property valuation and the construction industry. • Automatic information exchange between AEC projects and property valuation. • A genetic algorithm optimized boosting ensemble machine learning model. • A BIM and machine learning integration framework. • An IFC Extension for property valuation and an IFC-based information extraction algorithm." @default.
- W3162081704 created "2021-05-24" @default.
- W3162081704 creator A5000713353 @default.
- W3162081704 creator A5003105240 @default.
- W3162081704 creator A5087036820 @default.
- W3162081704 date "2021-12-01" @default.
- W3162081704 modified "2023-10-16" @default.
- W3162081704 title "A BIM and machine learning integration framework for automated property valuation" @default.
- W3162081704 cites W1582258220 @default.
- W3162081704 cites W1907462124 @default.
- W3162081704 cites W1944586112 @default.
- W3162081704 cites W1969801432 @default.
- W3162081704 cites W1974518327 @default.
- W3162081704 cites W1981475350 @default.
- W3162081704 cites W1988980926 @default.
- W3162081704 cites W2018120288 @default.
- W3162081704 cites W2020351153 @default.
- W3162081704 cites W2041810127 @default.
- W3162081704 cites W2052531283 @default.
- W3162081704 cites W2060315002 @default.
- W3162081704 cites W2060593689 @default.
- W3162081704 cites W2067141068 @default.
- W3162081704 cites W2070300253 @default.
- W3162081704 cites W2078280831 @default.
- W3162081704 cites W2088794999 @default.
- W3162081704 cites W2129475290 @default.
- W3162081704 cites W2135667818 @default.
- W3162081704 cites W2136922540 @default.
- W3162081704 cites W2251575556 @default.
- W3162081704 cites W2285501410 @default.
- W3162081704 cites W2325350344 @default.
- W3162081704 cites W2490033382 @default.
- W3162081704 cites W2531874100 @default.
- W3162081704 cites W2591729126 @default.
- W3162081704 cites W2600383928 @default.
- W3162081704 cites W2606450774 @default.
- W3162081704 cites W2607075461 @default.
- W3162081704 cites W2751758508 @default.
- W3162081704 cites W2789477383 @default.
- W3162081704 cites W2789905221 @default.
- W3162081704 cites W2793283241 @default.
- W3162081704 cites W2805611890 @default.
- W3162081704 cites W2915062141 @default.
- W3162081704 cites W2915754965 @default.
- W3162081704 cites W2932253668 @default.
- W3162081704 cites W2944702037 @default.
- W3162081704 cites W2963738622 @default.
- W3162081704 cites W2964196509 @default.
- W3162081704 cites W2997990601 @default.
- W3162081704 cites W3034162589 @default.
- W3162081704 cites W3039763960 @default.
- W3162081704 cites W3080665108 @default.
- W3162081704 cites W3106696413 @default.
- W3162081704 cites W3109259686 @default.
- W3162081704 cites W4241179191 @default.
- W3162081704 cites W971893619 @default.
- W3162081704 doi "https://doi.org/10.1016/j.jobe.2021.102636" @default.
- W3162081704 hasPublicationYear "2021" @default.
- W3162081704 type Work @default.
- W3162081704 sameAs 3162081704 @default.
- W3162081704 citedByCount "17" @default.
- W3162081704 countsByYear W31620817042022 @default.
- W3162081704 countsByYear W31620817042023 @default.
- W3162081704 crossrefType "journal-article" @default.
- W3162081704 hasAuthorship W3162081704A5000713353 @default.
- W3162081704 hasAuthorship W3162081704A5003105240 @default.
- W3162081704 hasAuthorship W3162081704A5087036820 @default.
- W3162081704 hasBestOaLocation W31620817041 @default.
- W3162081704 hasConcept C10138342 @default.
- W3162081704 hasConcept C111472728 @default.
- W3162081704 hasConcept C127413603 @default.
- W3162081704 hasConcept C138885662 @default.
- W3162081704 hasConcept C144133560 @default.
- W3162081704 hasConcept C154945302 @default.
- W3162081704 hasConcept C186027771 @default.
- W3162081704 hasConcept C189950617 @default.
- W3162081704 hasConcept C201995342 @default.
- W3162081704 hasConcept C41008148 @default.
- W3162081704 hasConceptScore W3162081704C10138342 @default.
- W3162081704 hasConceptScore W3162081704C111472728 @default.
- W3162081704 hasConceptScore W3162081704C127413603 @default.
- W3162081704 hasConceptScore W3162081704C138885662 @default.
- W3162081704 hasConceptScore W3162081704C144133560 @default.
- W3162081704 hasConceptScore W3162081704C154945302 @default.
- W3162081704 hasConceptScore W3162081704C186027771 @default.
- W3162081704 hasConceptScore W3162081704C189950617 @default.
- W3162081704 hasConceptScore W3162081704C201995342 @default.
- W3162081704 hasConceptScore W3162081704C41008148 @default.
- W3162081704 hasLocation W31620817041 @default.
- W3162081704 hasLocation W31620817042 @default.
- W3162081704 hasLocation W31620817043 @default.
- W3162081704 hasOpenAccess W3162081704 @default.
- W3162081704 hasPrimaryLocation W31620817041 @default.
- W3162081704 hasRelatedWork W1966044918 @default.
- W3162081704 hasRelatedWork W1988932368 @default.
- W3162081704 hasRelatedWork W2011787499 @default.
- W3162081704 hasRelatedWork W2352757948 @default.
- W3162081704 hasRelatedWork W2363192594 @default.