Matches in SemOpenAlex for { <https://semopenalex.org/work/W3162085067> ?p ?o ?g. }
- W3162085067 abstract "Nowadays, shallow and deep Neural Networks (NNs) have vast applications including biomedical engineering, image processing, computer vision, and speech recognition. Many researchers have developed hardware accelerators including field-programmable gate arrays (FPGAs) for implementing high-performance and energy efficient NNs. Apparently, the hardware architecture design process is specific and time-consuming for each NN. Therefore, a systematic way to design, implement and optimize NNs is highly demanded. The paper presents a systematic approach to implement state-space models in register transfer level (RTL), with special interest for NN implementation. The proposed design flow is based on the iterative nature of state-space models and the analogy between state-space formulations and finite-state machines. The method can be used in linear/nonlinear and time-varying/time-invariant systems. It can also be used to implement either intrinsically iterative systems (widely used in various domains such as signal processing, numerical analysis, computer arithmetic, and control engineering), or systems that could be rewritten in equivalent iterative forms. The implementation of recurrent NNs such as long short-term memory (LSTM) NNs, which have intrinsic state-space forms, are another major applications for this framework. As a case study, it is shown that state-space systems can be used for the systematic implementation and optimization of NNs (as nonlinear and time-varying dynamic systems). An RTL code generating software is also provided online, which simplifies the automatic generation of NNs of arbitrary size." @default.
- W3162085067 created "2021-05-24" @default.
- W3162085067 creator A5006801335 @default.
- W3162085067 creator A5014011051 @default.
- W3162085067 creator A5069641751 @default.
- W3162085067 date "2021-05-15" @default.
- W3162085067 modified "2023-09-27" @default.
- W3162085067 title "Hardware Synthesis of State-Space Equations; Application to FPGA Implementation of Shallow and Deep Neural Networks." @default.
- W3162085067 cites W1481834144 @default.
- W3162085067 cites W1491361087 @default.
- W3162085067 cites W1563686443 @default.
- W3162085067 cites W1590348499 @default.
- W3162085067 cites W1757537413 @default.
- W3162085067 cites W1968422655 @default.
- W3162085067 cites W1975489482 @default.
- W3162085067 cites W1981752636 @default.
- W3162085067 cites W1986396242 @default.
- W3162085067 cites W2000967104 @default.
- W3162085067 cites W2044535169 @default.
- W3162085067 cites W2048266589 @default.
- W3162085067 cites W2067523571 @default.
- W3162085067 cites W2094756095 @default.
- W3162085067 cites W2099517310 @default.
- W3162085067 cites W2102543317 @default.
- W3162085067 cites W2125203716 @default.
- W3162085067 cites W2130408605 @default.
- W3162085067 cites W2133156997 @default.
- W3162085067 cites W2142801765 @default.
- W3162085067 cites W2143612262 @default.
- W3162085067 cites W2152839228 @default.
- W3162085067 cites W2153331583 @default.
- W3162085067 cites W2162390675 @default.
- W3162085067 cites W2163605009 @default.
- W3162085067 cites W2261808795 @default.
- W3162085067 cites W2289252105 @default.
- W3162085067 cites W2290132443 @default.
- W3162085067 cites W2475663704 @default.
- W3162085067 cites W2488643219 @default.
- W3162085067 cites W2776940252 @default.
- W3162085067 cites W280536263 @default.
- W3162085067 cites W293134060 @default.
- W3162085067 cites W3152295672 @default.
- W3162085067 hasPublicationYear "2021" @default.
- W3162085067 type Work @default.
- W3162085067 sameAs 3162085067 @default.
- W3162085067 citedByCount "0" @default.
- W3162085067 crossrefType "posted-content" @default.
- W3162085067 hasAuthorship W3162085067A5006801335 @default.
- W3162085067 hasAuthorship W3162085067A5014011051 @default.
- W3162085067 hasAuthorship W3162085067A5069641751 @default.
- W3162085067 hasConcept C105795698 @default.
- W3162085067 hasConcept C113775141 @default.
- W3162085067 hasConcept C115903868 @default.
- W3162085067 hasConcept C143587482 @default.
- W3162085067 hasConcept C149635348 @default.
- W3162085067 hasConcept C154945302 @default.
- W3162085067 hasConcept C199360897 @default.
- W3162085067 hasConcept C2776221188 @default.
- W3162085067 hasConcept C2777904410 @default.
- W3162085067 hasConcept C33923547 @default.
- W3162085067 hasConcept C41008148 @default.
- W3162085067 hasConcept C42935608 @default.
- W3162085067 hasConcept C50644808 @default.
- W3162085067 hasConcept C72434380 @default.
- W3162085067 hasConcept C9390403 @default.
- W3162085067 hasConceptScore W3162085067C105795698 @default.
- W3162085067 hasConceptScore W3162085067C113775141 @default.
- W3162085067 hasConceptScore W3162085067C115903868 @default.
- W3162085067 hasConceptScore W3162085067C143587482 @default.
- W3162085067 hasConceptScore W3162085067C149635348 @default.
- W3162085067 hasConceptScore W3162085067C154945302 @default.
- W3162085067 hasConceptScore W3162085067C199360897 @default.
- W3162085067 hasConceptScore W3162085067C2776221188 @default.
- W3162085067 hasConceptScore W3162085067C2777904410 @default.
- W3162085067 hasConceptScore W3162085067C33923547 @default.
- W3162085067 hasConceptScore W3162085067C41008148 @default.
- W3162085067 hasConceptScore W3162085067C42935608 @default.
- W3162085067 hasConceptScore W3162085067C50644808 @default.
- W3162085067 hasConceptScore W3162085067C72434380 @default.
- W3162085067 hasConceptScore W3162085067C9390403 @default.
- W3162085067 hasLocation W31620850671 @default.
- W3162085067 hasOpenAccess W3162085067 @default.
- W3162085067 hasPrimaryLocation W31620850671 @default.
- W3162085067 hasRelatedWork W1498494876 @default.
- W3162085067 hasRelatedWork W2030486394 @default.
- W3162085067 hasRelatedWork W2147352367 @default.
- W3162085067 hasRelatedWork W2162859249 @default.
- W3162085067 hasRelatedWork W2206032726 @default.
- W3162085067 hasRelatedWork W2272769310 @default.
- W3162085067 hasRelatedWork W2293282867 @default.
- W3162085067 hasRelatedWork W2768018390 @default.
- W3162085067 hasRelatedWork W2800732451 @default.
- W3162085067 hasRelatedWork W2800886065 @default.
- W3162085067 hasRelatedWork W2801270250 @default.
- W3162085067 hasRelatedWork W2803085202 @default.
- W3162085067 hasRelatedWork W2960477732 @default.
- W3162085067 hasRelatedWork W2971231369 @default.
- W3162085067 hasRelatedWork W2972603044 @default.
- W3162085067 hasRelatedWork W3045327589 @default.
- W3162085067 hasRelatedWork W3088600888 @default.