Matches in SemOpenAlex for { <https://semopenalex.org/work/W3162105667> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W3162105667 endingPage "3903" @default.
- W3162105667 startingPage "3891" @default.
- W3162105667 abstract "Failure caused by corrosion in industries are the major cause of breakdown maintenance. Acoustic emission during the accelerated corrosion testing is a reliable method for corrosion detection, however, classification of these acoustic emission signals by machine learning techniques is still in its infancy. Proposed approach uses a hybrid technique that combines the detection of corrosion through acoustic emission signals from accelerated corrosion testing with machine learning techniques to accurately predict the corrosion severity levels. Laboratory based experimentation setup was established for accelerated corrosion testing of mild steel samples for different time spans and mass loss of samples were recorded. Acoustic emission signals were acquired at high frequency sampling rate with Sound Well AE sensor, NI Elvis kit and NI Labview software. AE mean, AE RMS, AE energy, and kurtosis were selected as distinct features as they represent a linear relationship with the corrosion process. For multi-class problem, five Corrosion severity levels have been made based on mass loss occurred during accelerated corrosion testing for which Naive Bayes, BP-NN and RBF-NN showed accuracy of 90.4%, 94.57%, and 100% respectively." @default.
- W3162105667 created "2021-05-24" @default.
- W3162105667 creator A5005136866 @default.
- W3162105667 creator A5012252232 @default.
- W3162105667 creator A5038979136 @default.
- W3162105667 creator A5039881132 @default.
- W3162105667 creator A5054562046 @default.
- W3162105667 creator A5061808578 @default.
- W3162105667 date "2021-12-01" @default.
- W3162105667 modified "2023-10-02" @default.
- W3162105667 title "Corrosion detection and severity level prediction using acoustic emission and machine learning based approach" @default.
- W3162105667 cites W1589972273 @default.
- W3162105667 cites W1967128993 @default.
- W3162105667 cites W1975216761 @default.
- W3162105667 cites W1985479930 @default.
- W3162105667 cites W1992020362 @default.
- W3162105667 cites W1997052472 @default.
- W3162105667 cites W1997098006 @default.
- W3162105667 cites W2038212338 @default.
- W3162105667 cites W2064962023 @default.
- W3162105667 cites W2076327099 @default.
- W3162105667 cites W2094947400 @default.
- W3162105667 cites W2113681917 @default.
- W3162105667 cites W2155819170 @default.
- W3162105667 cites W2272498414 @default.
- W3162105667 cites W2509052084 @default.
- W3162105667 cites W2590677011 @default.
- W3162105667 cites W2600553928 @default.
- W3162105667 doi "https://doi.org/10.1016/j.asej.2021.03.024" @default.
- W3162105667 hasPublicationYear "2021" @default.
- W3162105667 type Work @default.
- W3162105667 sameAs 3162105667 @default.
- W3162105667 citedByCount "23" @default.
- W3162105667 countsByYear W31621056672021 @default.
- W3162105667 countsByYear W31621056672022 @default.
- W3162105667 countsByYear W31621056672023 @default.
- W3162105667 crossrefType "journal-article" @default.
- W3162105667 hasAuthorship W3162105667A5005136866 @default.
- W3162105667 hasAuthorship W3162105667A5012252232 @default.
- W3162105667 hasAuthorship W3162105667A5038979136 @default.
- W3162105667 hasAuthorship W3162105667A5039881132 @default.
- W3162105667 hasAuthorship W3162105667A5054562046 @default.
- W3162105667 hasAuthorship W3162105667A5061808578 @default.
- W3162105667 hasBestOaLocation W31621056671 @default.
- W3162105667 hasConcept C105795698 @default.
- W3162105667 hasConcept C121332964 @default.
- W3162105667 hasConcept C159985019 @default.
- W3162105667 hasConcept C166963901 @default.
- W3162105667 hasConcept C174598085 @default.
- W3162105667 hasConcept C191897082 @default.
- W3162105667 hasConcept C192562407 @default.
- W3162105667 hasConcept C20625102 @default.
- W3162105667 hasConcept C24890656 @default.
- W3162105667 hasConcept C33923547 @default.
- W3162105667 hasConcept C41008148 @default.
- W3162105667 hasConceptScore W3162105667C105795698 @default.
- W3162105667 hasConceptScore W3162105667C121332964 @default.
- W3162105667 hasConceptScore W3162105667C159985019 @default.
- W3162105667 hasConceptScore W3162105667C166963901 @default.
- W3162105667 hasConceptScore W3162105667C174598085 @default.
- W3162105667 hasConceptScore W3162105667C191897082 @default.
- W3162105667 hasConceptScore W3162105667C192562407 @default.
- W3162105667 hasConceptScore W3162105667C20625102 @default.
- W3162105667 hasConceptScore W3162105667C24890656 @default.
- W3162105667 hasConceptScore W3162105667C33923547 @default.
- W3162105667 hasConceptScore W3162105667C41008148 @default.
- W3162105667 hasFunder F4320321001 @default.
- W3162105667 hasFunder F4320321788 @default.
- W3162105667 hasFunder F4320322990 @default.
- W3162105667 hasIssue "4" @default.
- W3162105667 hasLocation W31621056671 @default.
- W3162105667 hasOpenAccess W3162105667 @default.
- W3162105667 hasPrimaryLocation W31621056671 @default.
- W3162105667 hasRelatedWork W2068311004 @default.
- W3162105667 hasRelatedWork W2314187808 @default.
- W3162105667 hasRelatedWork W2377260462 @default.
- W3162105667 hasRelatedWork W2610509641 @default.
- W3162105667 hasRelatedWork W2745815440 @default.
- W3162105667 hasRelatedWork W2899084033 @default.
- W3162105667 hasRelatedWork W3097783663 @default.
- W3162105667 hasRelatedWork W3135117324 @default.
- W3162105667 hasRelatedWork W4233873706 @default.
- W3162105667 hasRelatedWork W93552598 @default.
- W3162105667 hasVolume "12" @default.
- W3162105667 isParatext "false" @default.
- W3162105667 isRetracted "false" @default.
- W3162105667 magId "3162105667" @default.
- W3162105667 workType "article" @default.