Matches in SemOpenAlex for { <https://semopenalex.org/work/W3162109809> ?p ?o ?g. }
- W3162109809 endingPage "2408" @default.
- W3162109809 startingPage "2399" @default.
- W3162109809 abstract "Numerous microbes have been found to have vital impacts on human health through affecting biological processes. Therefore, exploring potential associations between microbes and diseases will promote the understanding and diagnosis of diseases. In this study, we present a novel computational model, named MSLINE, to infer potential microbe-disease associations by integrating Multiple Similarities and Large-scale Information Network Embedding (LINE) based on known associations. Specifically, on the basis of known microbe-disease associations from the Human Microbe-Disease Association Database, we first increase the known associations by collecting proven associations from existing literatures. We then construct a microbe-disease heterogeneous network (MDHN) by integrating known associations and multiple similarities (including Gaussian interaction profile kernel similarity, microbe function similarity, disease semantic similarity and disease-symptom similarity). After that, we implement random walk and LINE algorithm on MDHN to learn its structure information. Finally, we score the microbe-disease associations according to the structure information for every nodes. In the Leave-one-out cross validation and 5-fold cross validation, MSLINE performs better compared to other existing methods. Moreover, case studies of different diseases proved that MSLINE could predict the potential microbe-disease associations efficiently." @default.
- W3162109809 created "2021-05-24" @default.
- W3162109809 creator A5038582529 @default.
- W3162109809 creator A5041852496 @default.
- W3162109809 creator A5058768577 @default.
- W3162109809 creator A5069777246 @default.
- W3162109809 date "2022-07-01" @default.
- W3162109809 modified "2023-10-17" @default.
- W3162109809 title "Predicting Microbe-Disease Association Based on Multiple Similarities and LINE Algorithm" @default.
- W3162109809 cites W1567879833 @default.
- W3162109809 cites W1602712249 @default.
- W3162109809 cites W1607743621 @default.
- W3162109809 cites W1668831833 @default.
- W3162109809 cites W1966931970 @default.
- W3162109809 cites W1977365416 @default.
- W3162109809 cites W2006632373 @default.
- W3162109809 cites W2006990698 @default.
- W3162109809 cites W2012606594 @default.
- W3162109809 cites W2036253517 @default.
- W3162109809 cites W2041073071 @default.
- W3162109809 cites W2067806364 @default.
- W3162109809 cites W2083818279 @default.
- W3162109809 cites W2091840905 @default.
- W3162109809 cites W2110621364 @default.
- W3162109809 cites W2125692370 @default.
- W3162109809 cites W2128769815 @default.
- W3162109809 cites W2131415145 @default.
- W3162109809 cites W2158734599 @default.
- W3162109809 cites W2229719906 @default.
- W3162109809 cites W2265028660 @default.
- W3162109809 cites W2322763599 @default.
- W3162109809 cites W2618503740 @default.
- W3162109809 cites W2624837622 @default.
- W3162109809 cites W2735316918 @default.
- W3162109809 cites W2739664659 @default.
- W3162109809 cites W2752131265 @default.
- W3162109809 cites W2762906919 @default.
- W3162109809 cites W2765928324 @default.
- W3162109809 cites W2767683865 @default.
- W3162109809 cites W2768799378 @default.
- W3162109809 cites W2776589520 @default.
- W3162109809 cites W2783981376 @default.
- W3162109809 cites W2794896638 @default.
- W3162109809 cites W2807176368 @default.
- W3162109809 cites W2810107880 @default.
- W3162109809 cites W2888833353 @default.
- W3162109809 cites W2892502396 @default.
- W3162109809 cites W2894128290 @default.
- W3162109809 cites W2898587007 @default.
- W3162109809 cites W2901312953 @default.
- W3162109809 cites W2904076541 @default.
- W3162109809 cites W2916981547 @default.
- W3162109809 cites W2922104103 @default.
- W3162109809 cites W2938306835 @default.
- W3162109809 cites W2957404091 @default.
- W3162109809 cites W2965014447 @default.
- W3162109809 cites W2965393225 @default.
- W3162109809 cites W2969437394 @default.
- W3162109809 cites W2971401255 @default.
- W3162109809 cites W2981584921 @default.
- W3162109809 cites W2985905839 @default.
- W3162109809 cites W3003518864 @default.
- W3162109809 cites W3004598131 @default.
- W3162109809 cites W3012409960 @default.
- W3162109809 cites W3015492777 @default.
- W3162109809 cites W3016813012 @default.
- W3162109809 cites W3045879648 @default.
- W3162109809 cites W3103443653 @default.
- W3162109809 cites W3105705953 @default.
- W3162109809 cites W4210986718 @default.
- W3162109809 cites W4211248483 @default.
- W3162109809 cites W4211263216 @default.
- W3162109809 doi "https://doi.org/10.1109/tcbb.2021.3082183" @default.
- W3162109809 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34014827" @default.
- W3162109809 hasPublicationYear "2022" @default.
- W3162109809 type Work @default.
- W3162109809 sameAs 3162109809 @default.
- W3162109809 citedByCount "4" @default.
- W3162109809 countsByYear W31621098092022 @default.
- W3162109809 countsByYear W31621098092023 @default.
- W3162109809 crossrefType "journal-article" @default.
- W3162109809 hasAuthorship W3162109809A5038582529 @default.
- W3162109809 hasAuthorship W3162109809A5041852496 @default.
- W3162109809 hasAuthorship W3162109809A5058768577 @default.
- W3162109809 hasAuthorship W3162109809A5069777246 @default.
- W3162109809 hasConcept C103278499 @default.
- W3162109809 hasConcept C114614502 @default.
- W3162109809 hasConcept C115961682 @default.
- W3162109809 hasConcept C119857082 @default.
- W3162109809 hasConcept C121332964 @default.
- W3162109809 hasConcept C124101348 @default.
- W3162109809 hasConcept C130318100 @default.
- W3162109809 hasConcept C142724271 @default.
- W3162109809 hasConcept C142853389 @default.
- W3162109809 hasConcept C154945302 @default.
- W3162109809 hasConcept C15744967 @default.
- W3162109809 hasConcept C163716315 @default.
- W3162109809 hasConcept C199360897 @default.