Matches in SemOpenAlex for { <https://semopenalex.org/work/W3162133274> ?p ?o ?g. }
- W3162133274 endingPage "117236" @default.
- W3162133274 startingPage "117236" @default.
- W3162133274 abstract "Numerous geochemical approaches have been proposed to ascertain if methane concentrations in groundwater, [CH 4 ], are anomalous, i.e., migrated from hydrocarbon production wells, rather than derived from natural sources. We propose a machine-learning model to consider alkalinity, Ca, Mg, Na, Ba, Fe, Mn, Cl, sulfate, TDS, specific conductance, pH, temperature, and turbidity holistically together. The model, an ensemble of sub-models targeting one parameter pair per sub-model, was trained with groundwater chemistry from Pennsylvania ( n =19,086) and a set of 16 analyses from putatively contaminated groundwater. For cases where [CH 4 ] ≥ 10 mg/L, salinity- and redox-related parameters sometimes show that CH 4 may have moved into the aquifer recently and separately from natural brine migration, i.e., anomalous CH 4 . We applied the model to validation and hold-out data for Pennsylvania ( n =4,786) and groundwater data from three other gas-producing states: New York ( n =203), Texas ( n =688), and Colorado ( n =10,258). The applications show that 1.4%, 1.3%, 0%, and 0.9% of tested samples in these four states, respectively, have high [CH 4 ] and are ≥50% likely to have been impacted by gas migrated from exploited reservoirs. If our approach is indeed successful in flagging anomalous CH 4 , we conclude that: i) the frequency of anomalous CH 4 (# flagged water samples / total samples tested) in the Appalachian Basin is similar in areas where gas wells target unconventional as compared to conventional reservoirs, and ii) the frequency of anomalous CH 4 in Pennsylvania is higher than in Texas + Colorado. We cannot, however, exclude the possibility that differences among regions might be affected by differences in data volumes. Machine learning models will become increasingly useful in informing decision-making for shale gas development. • We build a data-driven model to predict the likelihood of anomalous CH 4 in water • We apply this model to water quality data sets from PA, NY, TX, and CO • Models detect similar rates of anomalous CH 4 cases between PA and NY • Models detect more anomalous CH 4 cases in PA than in TX + CO" @default.
- W3162133274 created "2021-05-24" @default.
- W3162133274 creator A5024774960 @default.
- W3162133274 creator A5071139379 @default.
- W3162133274 creator A5076952322 @default.
- W3162133274 creator A5077599395 @default.
- W3162133274 creator A5087213968 @default.
- W3162133274 date "2021-07-01" @default.
- W3162133274 modified "2023-10-11" @default.
- W3162133274 title "Detecting anomalous methane in groundwater within hydrocarbon production areas across the United States" @default.
- W3162133274 cites W1140399079 @default.
- W3162133274 cites W1513896494 @default.
- W3162133274 cites W1885877600 @default.
- W3162133274 cites W1988483113 @default.
- W3162133274 cites W1993791101 @default.
- W3162133274 cites W2011578543 @default.
- W3162133274 cites W2018748247 @default.
- W3162133274 cites W2047691313 @default.
- W3162133274 cites W2055834112 @default.
- W3162133274 cites W2061206676 @default.
- W3162133274 cites W2071377304 @default.
- W3162133274 cites W2114878967 @default.
- W3162133274 cites W2114908003 @default.
- W3162133274 cites W2128180975 @default.
- W3162133274 cites W2134900633 @default.
- W3162133274 cites W2146799699 @default.
- W3162133274 cites W2149397149 @default.
- W3162133274 cites W2155467527 @default.
- W3162133274 cites W2162643797 @default.
- W3162133274 cites W2166083971 @default.
- W3162133274 cites W2273867799 @default.
- W3162133274 cites W2308369269 @default.
- W3162133274 cites W2314096396 @default.
- W3162133274 cites W2314642045 @default.
- W3162133274 cites W2315428724 @default.
- W3162133274 cites W2319498944 @default.
- W3162133274 cites W2319532172 @default.
- W3162133274 cites W2324202198 @default.
- W3162133274 cites W2466788594 @default.
- W3162133274 cites W2467423927 @default.
- W3162133274 cites W2523944919 @default.
- W3162133274 cites W2573726734 @default.
- W3162133274 cites W2592869347 @default.
- W3162133274 cites W2612464280 @default.
- W3162133274 cites W2739742859 @default.
- W3162133274 cites W2766114979 @default.
- W3162133274 cites W2776322617 @default.
- W3162133274 cites W2780626949 @default.
- W3162133274 cites W2804119863 @default.
- W3162133274 cites W2901480232 @default.
- W3162133274 cites W2967349989 @default.
- W3162133274 cites W2973998150 @default.
- W3162133274 cites W2976629220 @default.
- W3162133274 cites W2977997531 @default.
- W3162133274 cites W2980595958 @default.
- W3162133274 cites W3006681807 @default.
- W3162133274 cites W3035420639 @default.
- W3162133274 cites W3139194796 @default.
- W3162133274 cites W4246270543 @default.
- W3162133274 doi "https://doi.org/10.1016/j.watres.2021.117236" @default.
- W3162133274 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34062403" @default.
- W3162133274 hasPublicationYear "2021" @default.
- W3162133274 type Work @default.
- W3162133274 sameAs 3162133274 @default.
- W3162133274 citedByCount "11" @default.
- W3162133274 countsByYear W31621332742021 @default.
- W3162133274 countsByYear W31621332742022 @default.
- W3162133274 countsByYear W31621332742023 @default.
- W3162133274 crossrefType "journal-article" @default.
- W3162133274 hasAuthorship W3162133274A5024774960 @default.
- W3162133274 hasAuthorship W3162133274A5071139379 @default.
- W3162133274 hasAuthorship W3162133274A5076952322 @default.
- W3162133274 hasAuthorship W3162133274A5077599395 @default.
- W3162133274 hasAuthorship W3162133274A5087213968 @default.
- W3162133274 hasBestOaLocation W31621332741 @default.
- W3162133274 hasConcept C107872376 @default.
- W3162133274 hasConcept C111368507 @default.
- W3162133274 hasConcept C118416809 @default.
- W3162133274 hasConcept C127313418 @default.
- W3162133274 hasConcept C129513315 @default.
- W3162133274 hasConcept C178790620 @default.
- W3162133274 hasConcept C185592680 @default.
- W3162133274 hasConcept C187320778 @default.
- W3162133274 hasConcept C199289684 @default.
- W3162133274 hasConcept C2776957854 @default.
- W3162133274 hasConcept C2777207669 @default.
- W3162133274 hasConcept C2778343803 @default.
- W3162133274 hasConcept C39432304 @default.
- W3162133274 hasConcept C45812177 @default.
- W3162133274 hasConcept C516920438 @default.
- W3162133274 hasConcept C59427239 @default.
- W3162133274 hasConcept C75622301 @default.
- W3162133274 hasConcept C76177295 @default.
- W3162133274 hasConcept C76886044 @default.
- W3162133274 hasConceptScore W3162133274C107872376 @default.
- W3162133274 hasConceptScore W3162133274C111368507 @default.
- W3162133274 hasConceptScore W3162133274C118416809 @default.
- W3162133274 hasConceptScore W3162133274C127313418 @default.