Matches in SemOpenAlex for { <https://semopenalex.org/work/W3162133892> ?p ?o ?g. }
- W3162133892 endingPage "1541" @default.
- W3162133892 startingPage "1526" @default.
- W3162133892 abstract "Observational longitudinal data on treatments and covariates are increasingly used to investigate treatment effects, but are often subject to time-dependent confounding. Marginal structural models (MSMs), estimated using inverse probability of treatment weighting or the g-formula, are popular for handling this problem. With increasing development of advanced causal inference methods, it is important to be able to assess their performance in different scenarios to guide their application. Simulation studies are a key tool for this, but their use to evaluate causal inference methods has been limited. This paper focuses on the use of simulations for evaluations involving MSMs in studies with a time-to-event outcome. In a simulation, it is important to be able to generate the data in such a way that the correct forms of any models to be fitted to those data are known. However, this is not straightforward in the longitudinal setting because it is natural for data to be generated in a sequential conditional manner, whereas MSMs involve fitting marginal rather than conditional hazard models. We provide general results that enable the form of the correctly specified MSM to be derived based on a conditional data generating procedure, and show how the results can be applied when the conditional hazard model is an Aalen additive hazard or Cox model. Using conditional additive hazard models is advantageous because they imply additive MSMs that can be fitted using standard software. We describe and illustrate a simulation algorithm. Our results will help researchers to effectively evaluate causal inference methods via simulation." @default.
- W3162133892 created "2021-05-24" @default.
- W3162133892 creator A5015069542 @default.
- W3162133892 creator A5033301030 @default.
- W3162133892 creator A5041323870 @default.
- W3162133892 creator A5057085199 @default.
- W3162133892 date "2021-05-13" @default.
- W3162133892 modified "2023-10-13" @default.
- W3162133892 title "Simulating longitudinal data from marginal structural models using the additive hazard model" @default.
- W3162133892 cites W1964213733 @default.
- W3162133892 cites W1964743531 @default.
- W3162133892 cites W1973885323 @default.
- W3162133892 cites W2008557562 @default.
- W3162133892 cites W2009187570 @default.
- W3162133892 cites W2010463688 @default.
- W3162133892 cites W2032249595 @default.
- W3162133892 cites W2045006889 @default.
- W3162133892 cites W2056150680 @default.
- W3162133892 cites W2057684816 @default.
- W3162133892 cites W2058525586 @default.
- W3162133892 cites W2059527039 @default.
- W3162133892 cites W2082299845 @default.
- W3162133892 cites W2142495742 @default.
- W3162133892 cites W2149848064 @default.
- W3162133892 cites W2151651717 @default.
- W3162133892 cites W2159198921 @default.
- W3162133892 cites W2159691010 @default.
- W3162133892 cites W2160579250 @default.
- W3162133892 cites W2316976792 @default.
- W3162133892 cites W2322253843 @default.
- W3162133892 cites W2521300970 @default.
- W3162133892 cites W2898109712 @default.
- W3162133892 cites W2917141866 @default.
- W3162133892 cites W2962695369 @default.
- W3162133892 cites W2975884613 @default.
- W3162133892 cites W3001901935 @default.
- W3162133892 cites W3098865414 @default.
- W3162133892 cites W3104092108 @default.
- W3162133892 cites W4231279862 @default.
- W3162133892 cites W4244548826 @default.
- W3162133892 cites W836196718 @default.
- W3162133892 doi "https://doi.org/10.1002/bimj.202000040" @default.
- W3162133892 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33983641" @default.
- W3162133892 hasPublicationYear "2021" @default.
- W3162133892 type Work @default.
- W3162133892 sameAs 3162133892 @default.
- W3162133892 citedByCount "3" @default.
- W3162133892 countsByYear W31621338922022 @default.
- W3162133892 countsByYear W31621338922023 @default.
- W3162133892 crossrefType "journal-article" @default.
- W3162133892 hasAuthorship W3162133892A5015069542 @default.
- W3162133892 hasAuthorship W3162133892A5033301030 @default.
- W3162133892 hasAuthorship W3162133892A5041323870 @default.
- W3162133892 hasAuthorship W3162133892A5057085199 @default.
- W3162133892 hasBestOaLocation W31621338921 @default.
- W3162133892 hasConcept C105795698 @default.
- W3162133892 hasConcept C119043178 @default.
- W3162133892 hasConcept C119857082 @default.
- W3162133892 hasConcept C124101348 @default.
- W3162133892 hasConcept C126838900 @default.
- W3162133892 hasConcept C149782125 @default.
- W3162133892 hasConcept C152877465 @default.
- W3162133892 hasConcept C154945302 @default.
- W3162133892 hasConcept C158600405 @default.
- W3162133892 hasConcept C178790620 @default.
- W3162133892 hasConcept C183115368 @default.
- W3162133892 hasConcept C185429906 @default.
- W3162133892 hasConcept C185592680 @default.
- W3162133892 hasConcept C197656967 @default.
- W3162133892 hasConcept C26831200 @default.
- W3162133892 hasConcept C2776214188 @default.
- W3162133892 hasConcept C2779915747 @default.
- W3162133892 hasConcept C33923547 @default.
- W3162133892 hasConcept C41008148 @default.
- W3162133892 hasConcept C43555835 @default.
- W3162133892 hasConcept C49261128 @default.
- W3162133892 hasConcept C71924100 @default.
- W3162133892 hasConceptScore W3162133892C105795698 @default.
- W3162133892 hasConceptScore W3162133892C119043178 @default.
- W3162133892 hasConceptScore W3162133892C119857082 @default.
- W3162133892 hasConceptScore W3162133892C124101348 @default.
- W3162133892 hasConceptScore W3162133892C126838900 @default.
- W3162133892 hasConceptScore W3162133892C149782125 @default.
- W3162133892 hasConceptScore W3162133892C152877465 @default.
- W3162133892 hasConceptScore W3162133892C154945302 @default.
- W3162133892 hasConceptScore W3162133892C158600405 @default.
- W3162133892 hasConceptScore W3162133892C178790620 @default.
- W3162133892 hasConceptScore W3162133892C183115368 @default.
- W3162133892 hasConceptScore W3162133892C185429906 @default.
- W3162133892 hasConceptScore W3162133892C185592680 @default.
- W3162133892 hasConceptScore W3162133892C197656967 @default.
- W3162133892 hasConceptScore W3162133892C26831200 @default.
- W3162133892 hasConceptScore W3162133892C2776214188 @default.
- W3162133892 hasConceptScore W3162133892C2779915747 @default.
- W3162133892 hasConceptScore W3162133892C33923547 @default.
- W3162133892 hasConceptScore W3162133892C41008148 @default.
- W3162133892 hasConceptScore W3162133892C43555835 @default.
- W3162133892 hasConceptScore W3162133892C49261128 @default.