Matches in SemOpenAlex for { <https://semopenalex.org/work/W3162136488> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W3162136488 abstract "Medical diagnostic robot systems have been paid more and more attention due to its objectivity and accuracy. The diagnosis of mild cognitive impairment (MCI) is considered an effective means to prevent Alzheimer's disease (AD). Doctors diagnose MCI based on various clinical examinations, which are expensive and the diagnosis results rely on the knowledge of doctors. Therefore, it is necessary to develop a robot diagnostic system to eliminate the influence of human factors and obtain a higher accuracy rate. In this paper, we propose a novel Group Feature Domain Adversarial Neural Network (GF-DANN) for amnestic MCI (aMCI) diagnosis, which involves two important modules. A Group Feature Extraction (GFE) module is proposed to reduce individual differences by learning group-level features through adversarial learning. A Dual Branch Domain Adaptation (DBDA) module is carefully designed to reduce the distribution difference between the source and target domain in a domain adaption way. On three types of data set, GF-DANN achieves the best accuracy compared with classic machine learning and deep learning methods. On the DMS data set, GF-DANN has obtained an accuracy rate of 89.47%, and the sensitivity and specificity are 90% and 89%. In addition, by comparing three EEG data collection paradigms, our results demonstrate that the DMS paradigm has the potential to build an aMCI diagnose robot system." @default.
- W3162136488 created "2021-05-24" @default.
- W3162136488 creator A5001699116 @default.
- W3162136488 creator A5024031100 @default.
- W3162136488 creator A5039660081 @default.
- W3162136488 creator A5049939779 @default.
- W3162136488 creator A5058662281 @default.
- W3162136488 creator A5065679716 @default.
- W3162136488 creator A5068915028 @default.
- W3162136488 creator A5069765960 @default.
- W3162136488 creator A5084070782 @default.
- W3162136488 creator A5084592073 @default.
- W3162136488 creator A5085886221 @default.
- W3162136488 date "2021-04-28" @default.
- W3162136488 modified "2023-09-26" @default.
- W3162136488 title "Group Feature Learning and Domain Adversarial Neural Network for aMCI Diagnosis System Based on EEG" @default.
- W3162136488 cites W1686810756 @default.
- W3162136488 cites W1731081199 @default.
- W3162136488 cites W1928020405 @default.
- W3162136488 cites W1930624869 @default.
- W3162136488 cites W1985258161 @default.
- W3162136488 cites W2004641611 @default.
- W3162136488 cites W2028436804 @default.
- W3162136488 cites W2044425149 @default.
- W3162136488 cites W2082070408 @default.
- W3162136488 cites W2092685533 @default.
- W3162136488 cites W2099509424 @default.
- W3162136488 cites W2118585731 @default.
- W3162136488 cites W2119821739 @default.
- W3162136488 cites W2120357670 @default.
- W3162136488 cites W2169918686 @default.
- W3162136488 cites W2194775991 @default.
- W3162136488 cites W2409065804 @default.
- W3162136488 cites W2551054676 @default.
- W3162136488 cites W2568425819 @default.
- W3162136488 cites W2612445135 @default.
- W3162136488 cites W2802245552 @default.
- W3162136488 cites W2884561390 @default.
- W3162136488 cites W2898889089 @default.
- W3162136488 cites W2941781415 @default.
- W3162136488 cites W2963446712 @default.
- W3162136488 cites W3091176791 @default.
- W3162136488 doi "https://doi.org/10.48550/arxiv.2105.06270" @default.
- W3162136488 hasPublicationYear "2021" @default.
- W3162136488 type Work @default.
- W3162136488 sameAs 3162136488 @default.
- W3162136488 citedByCount "0" @default.
- W3162136488 crossrefType "posted-content" @default.
- W3162136488 hasAuthorship W3162136488A5001699116 @default.
- W3162136488 hasAuthorship W3162136488A5024031100 @default.
- W3162136488 hasAuthorship W3162136488A5039660081 @default.
- W3162136488 hasAuthorship W3162136488A5049939779 @default.
- W3162136488 hasAuthorship W3162136488A5058662281 @default.
- W3162136488 hasAuthorship W3162136488A5065679716 @default.
- W3162136488 hasAuthorship W3162136488A5068915028 @default.
- W3162136488 hasAuthorship W3162136488A5069765960 @default.
- W3162136488 hasAuthorship W3162136488A5084070782 @default.
- W3162136488 hasAuthorship W3162136488A5084592073 @default.
- W3162136488 hasAuthorship W3162136488A5085886221 @default.
- W3162136488 hasBestOaLocation W31621364881 @default.
- W3162136488 hasConcept C119857082 @default.
- W3162136488 hasConcept C154945302 @default.
- W3162136488 hasConcept C37736160 @default.
- W3162136488 hasConcept C41008148 @default.
- W3162136488 hasConcept C50644808 @default.
- W3162136488 hasConceptScore W3162136488C119857082 @default.
- W3162136488 hasConceptScore W3162136488C154945302 @default.
- W3162136488 hasConceptScore W3162136488C37736160 @default.
- W3162136488 hasConceptScore W3162136488C41008148 @default.
- W3162136488 hasConceptScore W3162136488C50644808 @default.
- W3162136488 hasLocation W31621364881 @default.
- W3162136488 hasOpenAccess W3162136488 @default.
- W3162136488 hasPrimaryLocation W31621364881 @default.
- W3162136488 hasRelatedWork W2903917280 @default.
- W3162136488 hasRelatedWork W2961085424 @default.
- W3162136488 hasRelatedWork W2980092132 @default.
- W3162136488 hasRelatedWork W3024390022 @default.
- W3162136488 hasRelatedWork W4229335043 @default.
- W3162136488 hasRelatedWork W4286629047 @default.
- W3162136488 hasRelatedWork W4306674287 @default.
- W3162136488 hasRelatedWork W4312306468 @default.
- W3162136488 hasRelatedWork W1629725936 @default.
- W3162136488 hasRelatedWork W4224009465 @default.
- W3162136488 isParatext "false" @default.
- W3162136488 isRetracted "false" @default.
- W3162136488 magId "3162136488" @default.
- W3162136488 workType "article" @default.