Matches in SemOpenAlex for { <https://semopenalex.org/work/W3162138022> ?p ?o ?g. }
Showing items 1 to 62 of
62
with 100 items per page.
- W3162138022 endingPage "145" @default.
- W3162138022 startingPage "145" @default.
- W3162138022 abstract "In this work, we discuss the methodology to apply the deep learning in the chemical process industry. Deep learning is the powerful predictive tool, which drinks the remarkable success within the realm of artificial intelligence, recently. We can participate in this triumph by comprehending and evaluating the nature of deep learning thoroughly and applying the preditive power to the fitting business. We weigh this developing technology and probe the pertinent methodology to apply in the chemical process industry." @default.
- W3162138022 created "2021-05-24" @default.
- W3162138022 creator A5037655063 @default.
- W3162138022 date "2019-01-01" @default.
- W3162138022 modified "2023-09-23" @default.
- W3162138022 title "2LH-7 : Application of Deep Learning in Chemical Engineering" @default.
- W3162138022 hasPublicationYear "2019" @default.
- W3162138022 type Work @default.
- W3162138022 sameAs 3162138022 @default.
- W3162138022 citedByCount "0" @default.
- W3162138022 crossrefType "journal-article" @default.
- W3162138022 hasAuthorship W3162138022A5037655063 @default.
- W3162138022 hasConcept C108583219 @default.
- W3162138022 hasConcept C111919701 @default.
- W3162138022 hasConcept C119857082 @default.
- W3162138022 hasConcept C154945302 @default.
- W3162138022 hasConcept C17744445 @default.
- W3162138022 hasConcept C199539241 @default.
- W3162138022 hasConcept C2522767166 @default.
- W3162138022 hasConcept C2778757428 @default.
- W3162138022 hasConcept C41008148 @default.
- W3162138022 hasConcept C98045186 @default.
- W3162138022 hasConceptScore W3162138022C108583219 @default.
- W3162138022 hasConceptScore W3162138022C111919701 @default.
- W3162138022 hasConceptScore W3162138022C119857082 @default.
- W3162138022 hasConceptScore W3162138022C154945302 @default.
- W3162138022 hasConceptScore W3162138022C17744445 @default.
- W3162138022 hasConceptScore W3162138022C199539241 @default.
- W3162138022 hasConceptScore W3162138022C2522767166 @default.
- W3162138022 hasConceptScore W3162138022C2778757428 @default.
- W3162138022 hasConceptScore W3162138022C41008148 @default.
- W3162138022 hasConceptScore W3162138022C98045186 @default.
- W3162138022 hasLocation W31621380221 @default.
- W3162138022 hasOpenAccess W3162138022 @default.
- W3162138022 hasPrimaryLocation W31621380221 @default.
- W3162138022 hasRelatedWork W1547082057 @default.
- W3162138022 hasRelatedWork W2124643635 @default.
- W3162138022 hasRelatedWork W2219389264 @default.
- W3162138022 hasRelatedWork W2504007114 @default.
- W3162138022 hasRelatedWork W2751189631 @default.
- W3162138022 hasRelatedWork W2760806295 @default.
- W3162138022 hasRelatedWork W2782812883 @default.
- W3162138022 hasRelatedWork W2802298751 @default.
- W3162138022 hasRelatedWork W2943556486 @default.
- W3162138022 hasRelatedWork W2944264045 @default.
- W3162138022 hasRelatedWork W2968145274 @default.
- W3162138022 hasRelatedWork W2995895679 @default.
- W3162138022 hasRelatedWork W2996326332 @default.
- W3162138022 hasRelatedWork W3031175349 @default.
- W3162138022 hasRelatedWork W3097765656 @default.
- W3162138022 hasRelatedWork W3134797425 @default.
- W3162138022 hasRelatedWork W3163338397 @default.
- W3162138022 hasRelatedWork W3187503080 @default.
- W3162138022 hasRelatedWork W3196220601 @default.
- W3162138022 hasRelatedWork W3210002453 @default.
- W3162138022 hasVolume "2019" @default.
- W3162138022 isParatext "false" @default.
- W3162138022 isRetracted "false" @default.
- W3162138022 magId "3162138022" @default.
- W3162138022 workType "article" @default.