Matches in SemOpenAlex for { <https://semopenalex.org/work/W3162144906> ?p ?o ?g. }
- W3162144906 endingPage "2268" @default.
- W3162144906 startingPage "2256" @default.
- W3162144906 abstract "Abstract Environmental DNA metabarcoding is a powerful approach for use in biomonitoring and impact assessments. Amplicon-based eDNA sequence data are characteristically highly divergent in sequencing depth (total reads per sample) as influenced inter alia by the number of samples simultaneously analyzed per sequencing run. The random forest (RF) machine learning algorithm has been successfully employed to accurately classify unknown samples into monitoring categories. To employ RF to eDNA data, and avoid sequencing-depth artifacts, sequence data across samples are normalized using rarefaction, a process that inherently loses information. The aim of this study was to inform future sampling designs in terms of the relationship between sampling depth and RF accuracy. We analyzed three published and one new bacterial amplicon datasets, using a RF, based initially on the maximal rarefied data available (minimum mean of > 30,000 reads across all datasets) to give our baseline performance. We then evaluated the RF classification success based on increasingly rarefied datasets. We found that extreme to moderate rarefaction (50–5000 sequences per sample) was sufficient to achieve prediction performance commensurate to the full data, depending on the classification task. We did not find that the number of classification classes, data balance across classes, or the total number of sequences or samples, were associated with predictive accuracy. We identified the ability of the training data to adequately characterize the classes being mapped as the most important criterion and discuss how this finding can inform future sampling design for eDNA based biomonitoring to reduce costs and computation time." @default.
- W3162144906 created "2021-05-24" @default.
- W3162144906 creator A5004909559 @default.
- W3162144906 creator A5015086628 @default.
- W3162144906 creator A5051310944 @default.
- W3162144906 creator A5091469086 @default.
- W3162144906 date "2021-01-01" @default.
- W3162144906 modified "2023-09-25" @default.
- W3162144906 title "Identifying the minimum amplicon sequence depth to adequately predict classes in eDNA-based marine biomonitoring using supervised machine learning" @default.
- W3162144906 cites W1565635109 @default.
- W3162144906 cites W1604935088 @default.
- W3162144906 cites W18678914 @default.
- W3162144906 cites W2006939484 @default.
- W3162144906 cites W2064127932 @default.
- W3162144906 cites W2069669658 @default.
- W3162144906 cites W2090482891 @default.
- W3162144906 cites W2091374137 @default.
- W3162144906 cites W2114766231 @default.
- W3162144906 cites W2114828048 @default.
- W3162144906 cites W2115693782 @default.
- W3162144906 cites W2118978333 @default.
- W3162144906 cites W2159517936 @default.
- W3162144906 cites W2287531489 @default.
- W3162144906 cites W2344736925 @default.
- W3162144906 cites W2401404581 @default.
- W3162144906 cites W2534138766 @default.
- W3162144906 cites W2549277965 @default.
- W3162144906 cites W2726481934 @default.
- W3162144906 cites W2767140392 @default.
- W3162144906 cites W2770355014 @default.
- W3162144906 cites W2774661702 @default.
- W3162144906 cites W2775206584 @default.
- W3162144906 cites W2803272388 @default.
- W3162144906 cites W2804079537 @default.
- W3162144906 cites W2883122372 @default.
- W3162144906 cites W2884303974 @default.
- W3162144906 cites W2897874992 @default.
- W3162144906 cites W2905292474 @default.
- W3162144906 cites W2905521613 @default.
- W3162144906 cites W2908640476 @default.
- W3162144906 cites W2911964244 @default.
- W3162144906 cites W3097366632 @default.
- W3162144906 cites W4251800481 @default.
- W3162144906 cites W4294214797 @default.
- W3162144906 doi "https://doi.org/10.1016/j.csbj.2021.04.005" @default.
- W3162144906 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8093828" @default.
- W3162144906 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33995917" @default.
- W3162144906 hasPublicationYear "2021" @default.
- W3162144906 type Work @default.
- W3162144906 sameAs 3162144906 @default.
- W3162144906 citedByCount "4" @default.
- W3162144906 countsByYear W31621449062022 @default.
- W3162144906 countsByYear W31621449062023 @default.
- W3162144906 crossrefType "journal-article" @default.
- W3162144906 hasAuthorship W3162144906A5004909559 @default.
- W3162144906 hasAuthorship W3162144906A5015086628 @default.
- W3162144906 hasAuthorship W3162144906A5051310944 @default.
- W3162144906 hasAuthorship W3162144906A5091469086 @default.
- W3162144906 hasBestOaLocation W31621449061 @default.
- W3162144906 hasConcept C104317684 @default.
- W3162144906 hasConcept C109051061 @default.
- W3162144906 hasConcept C119857082 @default.
- W3162144906 hasConcept C124101348 @default.
- W3162144906 hasConcept C130217890 @default.
- W3162144906 hasConcept C154945302 @default.
- W3162144906 hasConcept C18903297 @default.
- W3162144906 hasConcept C2778112365 @default.
- W3162144906 hasConcept C2779969263 @default.
- W3162144906 hasConcept C2993206177 @default.
- W3162144906 hasConcept C39432304 @default.
- W3162144906 hasConcept C41008148 @default.
- W3162144906 hasConcept C42062724 @default.
- W3162144906 hasConcept C49105822 @default.
- W3162144906 hasConcept C54355233 @default.
- W3162144906 hasConcept C70721500 @default.
- W3162144906 hasConcept C8185291 @default.
- W3162144906 hasConcept C86803240 @default.
- W3162144906 hasConceptScore W3162144906C104317684 @default.
- W3162144906 hasConceptScore W3162144906C109051061 @default.
- W3162144906 hasConceptScore W3162144906C119857082 @default.
- W3162144906 hasConceptScore W3162144906C124101348 @default.
- W3162144906 hasConceptScore W3162144906C130217890 @default.
- W3162144906 hasConceptScore W3162144906C154945302 @default.
- W3162144906 hasConceptScore W3162144906C18903297 @default.
- W3162144906 hasConceptScore W3162144906C2778112365 @default.
- W3162144906 hasConceptScore W3162144906C2779969263 @default.
- W3162144906 hasConceptScore W3162144906C2993206177 @default.
- W3162144906 hasConceptScore W3162144906C39432304 @default.
- W3162144906 hasConceptScore W3162144906C41008148 @default.
- W3162144906 hasConceptScore W3162144906C42062724 @default.
- W3162144906 hasConceptScore W3162144906C49105822 @default.
- W3162144906 hasConceptScore W3162144906C54355233 @default.
- W3162144906 hasConceptScore W3162144906C70721500 @default.
- W3162144906 hasConceptScore W3162144906C8185291 @default.
- W3162144906 hasConceptScore W3162144906C86803240 @default.
- W3162144906 hasFunder F4320320879 @default.
- W3162144906 hasLocation W31621449061 @default.
- W3162144906 hasLocation W31621449062 @default.