Matches in SemOpenAlex for { <https://semopenalex.org/work/W3162149093> ?p ?o ?g. }
- W3162149093 endingPage "e17886" @default.
- W3162149093 startingPage "e17886" @default.
- W3162149093 abstract "Background The increasing number of patients treated with peritoneal dialysis (PD) and their consistently high rate of hospital admissions have placed a large burden on the health care system. Early clinical interventions and optimal management of patients at a high risk of prolonged length of stay (pLOS) may help improve the medical efficiency and prognosis of PD-treated patients. If timely clinical interventions are not provided, patients at a high risk of pLOS may face a poor prognosis and high medical expenses, which will also be a burden on hospitals. Therefore, physicians need an effective pLOS prediction model for PD-treated patients. Objective This study aimed to develop an optimal data-driven model for predicting the pLOS risk of PD-treated patients using basic admission data. Methods Patient data collected using the Hospital Quality Monitoring System (HQMS) in China were used to develop pLOS prediction models. A stacking model was constructed with support vector machine, random forest (RF), and K-nearest neighbor algorithms as its base models and traditional logistic regression (LR) as its meta-model. The meta-model used the outputs of all 3 base models as input and generated the output of the stacking model. Another LR-based pLOS prediction model was built as the benchmark model. The prediction performance of the stacking model was compared with that of its base models and the benchmark model. Five-fold cross-validation was employed to develop and validate the models. Performance measures included the Brier score, area under the receiver operating characteristic curve (AUROC), estimated calibration index (ECI), accuracy, sensitivity, specificity, and geometric mean (Gm). In addition, a calibration plot was employed to visually demonstrate the calibration power of each model. Results The final cohort extracted from the HQMS database consisted of 23,992 eligible PD-treated patients, among whom 30.3% had a pLOS (ie, longer than the average LOS, which was 16 days in our study). Among the models, the stacking model achieved the best calibration (ECI 8.691), balanced accuracy (Gm 0.690), accuracy (0.695), and specificity (0.701). Meanwhile, the stacking and RF models had the best overall performance (Brier score 0.174 for both) and discrimination (AUROC 0.757 for the stacking model and 0.756 for the RF model). Compared with the benchmark LR model, the stacking model was superior in all performance measures except sensitivity, but there was no significant difference in sensitivity between the 2 models. The 2-sided t tests revealed significant performance differences between the stacking and LR models in overall performance, discrimination, calibration, balanced accuracy, and accuracy. Conclusions This study is the first to develop data-driven pLOS prediction models for PD-treated patients using basic admission data from a national database. The results indicate the feasibility of utilizing a stacking-based pLOS prediction model for PD-treated patients. The pLOS prediction tools developed in this study have the potential to assist clinicians in identifying patients at a high risk of pLOS and to allocate resources optimally for PD-treated patients." @default.
- W3162149093 created "2021-05-24" @default.
- W3162149093 creator A5002272507 @default.
- W3162149093 creator A5007312763 @default.
- W3162149093 creator A5039532569 @default.
- W3162149093 creator A5056587253 @default.
- W3162149093 creator A5058401828 @default.
- W3162149093 creator A5060239499 @default.
- W3162149093 creator A5063338849 @default.
- W3162149093 creator A5068228255 @default.
- W3162149093 creator A5075329157 @default.
- W3162149093 date "2021-05-19" @default.
- W3162149093 modified "2023-10-11" @default.
- W3162149093 title "Predicting Prolonged Length of Hospital Stay for Peritoneal Dialysis–Treated Patients Using Stacked Generalization: Model Development and Validation Study" @default.
- W3162149093 cites W1501117526 @default.
- W3162149093 cites W1832973271 @default.
- W3162149093 cites W1933399869 @default.
- W3162149093 cites W1934761783 @default.
- W3162149093 cites W1977173556 @default.
- W3162149093 cites W1978288447 @default.
- W3162149093 cites W1999889125 @default.
- W3162149093 cites W2007281290 @default.
- W3162149093 cites W2017152566 @default.
- W3162149093 cites W2021660330 @default.
- W3162149093 cites W2029866800 @default.
- W3162149093 cites W2036924892 @default.
- W3162149093 cites W2038576929 @default.
- W3162149093 cites W2040033996 @default.
- W3162149093 cites W2040235506 @default.
- W3162149093 cites W2041181510 @default.
- W3162149093 cites W2045459079 @default.
- W3162149093 cites W2049851097 @default.
- W3162149093 cites W2055618539 @default.
- W3162149093 cites W2057678261 @default.
- W3162149093 cites W2057738768 @default.
- W3162149093 cites W2063294722 @default.
- W3162149093 cites W2082305605 @default.
- W3162149093 cites W2084587071 @default.
- W3162149093 cites W2087347434 @default.
- W3162149093 cites W2094686600 @default.
- W3162149093 cites W2095163862 @default.
- W3162149093 cites W2095224791 @default.
- W3162149093 cites W2104296289 @default.
- W3162149093 cites W2108728387 @default.
- W3162149093 cites W2110358548 @default.
- W3162149093 cites W2118273117 @default.
- W3162149093 cites W2119910794 @default.
- W3162149093 cites W2122111042 @default.
- W3162149093 cites W2127662479 @default.
- W3162149093 cites W2130979840 @default.
- W3162149093 cites W2133169646 @default.
- W3162149093 cites W2140567182 @default.
- W3162149093 cites W2150577353 @default.
- W3162149093 cites W2152742787 @default.
- W3162149093 cites W2154791224 @default.
- W3162149093 cites W2161956583 @default.
- W3162149093 cites W2201949845 @default.
- W3162149093 cites W2240847548 @default.
- W3162149093 cites W2272732540 @default.
- W3162149093 cites W2346495905 @default.
- W3162149093 cites W2397296858 @default.
- W3162149093 cites W2410085699 @default.
- W3162149093 cites W2474004041 @default.
- W3162149093 cites W2504424910 @default.
- W3162149093 cites W2593467622 @default.
- W3162149093 cites W2614843878 @default.
- W3162149093 cites W2769053065 @default.
- W3162149093 cites W2793955735 @default.
- W3162149093 cites W2797028092 @default.
- W3162149093 cites W28412257 @default.
- W3162149093 cites W2911964244 @default.
- W3162149093 cites W2916485824 @default.
- W3162149093 cites W2918092070 @default.
- W3162149093 cites W2921441612 @default.
- W3162149093 cites W2987673745 @default.
- W3162149093 cites W2990621876 @default.
- W3162149093 cites W3007694378 @default.
- W3162149093 cites W780493824 @default.
- W3162149093 cites W2342662445 @default.
- W3162149093 doi "https://doi.org/10.2196/17886" @default.
- W3162149093 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8173398" @default.
- W3162149093 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34009135" @default.
- W3162149093 hasPublicationYear "2021" @default.
- W3162149093 type Work @default.
- W3162149093 sameAs 3162149093 @default.
- W3162149093 citedByCount "4" @default.
- W3162149093 countsByYear W31621490932022 @default.
- W3162149093 countsByYear W31621490932023 @default.
- W3162149093 crossrefType "journal-article" @default.
- W3162149093 hasAuthorship W3162149093A5002272507 @default.
- W3162149093 hasAuthorship W3162149093A5007312763 @default.
- W3162149093 hasAuthorship W3162149093A5039532569 @default.
- W3162149093 hasAuthorship W3162149093A5056587253 @default.
- W3162149093 hasAuthorship W3162149093A5058401828 @default.
- W3162149093 hasAuthorship W3162149093A5060239499 @default.
- W3162149093 hasAuthorship W3162149093A5063338849 @default.
- W3162149093 hasAuthorship W3162149093A5068228255 @default.
- W3162149093 hasAuthorship W3162149093A5075329157 @default.