Matches in SemOpenAlex for { <https://semopenalex.org/work/W3162178111> ?p ?o ?g. }
- W3162178111 endingPage "1473" @default.
- W3162178111 startingPage "1466" @default.
- W3162178111 abstract "Background While Prostate Imaging Reporting and Data System (PI-RADS) 4 and 5 lesions typically warrant prostate biopsy and PI-RADS 1 and 2 lesions may be safely observed, PI-RADS 3 lesions are equivocal. Purpose To construct and cross-validate a machine learning model based on radiomics features from T2-weighted imaging (T2WI) of PI-RADS 3 lesions to identify clinically significant prostate cancer (csPCa), that is, pathological Grade Group ≥ 2. Study type Single-center retrospective study. Population A total of 240 patients were included (training cohort, n = 188, age range 43–82 years; test cohort, n = 52, age range 41–79 years). Eligibility criteria were 1) magnetic resonance imaging (MRI)-targeted biopsy between 2015 and 2020; 2) PI-RADS 3 index lesion identified on multiparametric MRI; (3) biopsy performed within 1 year of MRI. The percentages of csPCa lesions were 10.6% and 15.4% in the training and test cohorts, respectively. Field strength/sequence A 3 T; T2WI turbo-spin echo, diffusion-weighted spin-echo echo planar imaging, dynamic contrast-enhanced MRI with time-resolved T1-weighted imaging. Assessment Multislice volumes-of-interest (VOIs) were drawn in the PI-RADS 3 index lesions on T2WI. A total of 107 radiomics features (first-order histogram and second-order texture) were extracted from the segmented lesions. Statistical Tests A random forest classifier using the radiomics features as input was trained and validated for prediction of csPCa. The performance of the machine learning classifier, prostate specific antigen (PSA) density, and prostate volume for csPCa prediction was evaluated using receiver operating characteristic (ROC) analysis. Results The trained random forest classifier constructed from the T2WI radiomics features good and statistically significant area-under-the-curves (AUCs) of 0.76 (P = 0.022) for prediction of csPCa in the test set. Prostate volume and PSA density showed moderate and nonsignificant performance (AUC 0.62, P = 0.275 and 0.61, P = 0.348, respectively) for csPCa prediction in the test set. Conclusion The machine learning classifier based on T2WI radiomic features demonstrated good performance for prediction of csPCa in PI-RADS 3 lesions. Evidence Level 4 Technical Efficacy 2" @default.
- W3162178111 created "2021-05-24" @default.
- W3162178111 creator A5003338851 @default.
- W3162178111 creator A5011275715 @default.
- W3162178111 creator A5012097731 @default.
- W3162178111 creator A5024676913 @default.
- W3162178111 creator A5025877936 @default.
- W3162178111 creator A5039034968 @default.
- W3162178111 creator A5053901817 @default.
- W3162178111 creator A5057660160 @default.
- W3162178111 creator A5082093033 @default.
- W3162178111 date "2021-05-10" @default.
- W3162178111 modified "2023-09-26" @default.
- W3162178111 title "Magnetic Resonance Imaging Radiomics‐Based Machine Learning Prediction of Clinically Significant Prostate Cancer in Equivocal <scp>PI‐RADS</scp> 3 Lesions" @default.
- W3162178111 cites W1827911007 @default.
- W3162178111 cites W1917894041 @default.
- W3162178111 cites W1918088834 @default.
- W3162178111 cites W1970706614 @default.
- W3162178111 cites W1989403098 @default.
- W3162178111 cites W2124539070 @default.
- W3162178111 cites W2138735189 @default.
- W3162178111 cites W2142068201 @default.
- W3162178111 cites W2164364841 @default.
- W3162178111 cites W2174661749 @default.
- W3162178111 cites W2334235689 @default.
- W3162178111 cites W2409649574 @default.
- W3162178111 cites W2513507045 @default.
- W3162178111 cites W2553141064 @default.
- W3162178111 cites W2604294081 @default.
- W3162178111 cites W2604451932 @default.
- W3162178111 cites W2619460247 @default.
- W3162178111 cites W2767128594 @default.
- W3162178111 cites W2767834044 @default.
- W3162178111 cites W2883115431 @default.
- W3162178111 cites W2891497399 @default.
- W3162178111 cites W2904793394 @default.
- W3162178111 cites W2916122585 @default.
- W3162178111 cites W2936995645 @default.
- W3162178111 cites W2963883833 @default.
- W3162178111 cites W2984143228 @default.
- W3162178111 cites W2998789541 @default.
- W3162178111 cites W2999417355 @default.
- W3162178111 cites W3002822554 @default.
- W3162178111 cites W3016856328 @default.
- W3162178111 cites W3027017122 @default.
- W3162178111 cites W3028711397 @default.
- W3162178111 cites W3049208736 @default.
- W3162178111 doi "https://doi.org/10.1002/jmri.27692" @default.
- W3162178111 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33970516" @default.
- W3162178111 hasPublicationYear "2021" @default.
- W3162178111 type Work @default.
- W3162178111 sameAs 3162178111 @default.
- W3162178111 citedByCount "21" @default.
- W3162178111 countsByYear W31621781112021 @default.
- W3162178111 countsByYear W31621781112022 @default.
- W3162178111 countsByYear W31621781112023 @default.
- W3162178111 crossrefType "journal-article" @default.
- W3162178111 hasAuthorship W3162178111A5003338851 @default.
- W3162178111 hasAuthorship W3162178111A5011275715 @default.
- W3162178111 hasAuthorship W3162178111A5012097731 @default.
- W3162178111 hasAuthorship W3162178111A5024676913 @default.
- W3162178111 hasAuthorship W3162178111A5025877936 @default.
- W3162178111 hasAuthorship W3162178111A5039034968 @default.
- W3162178111 hasAuthorship W3162178111A5053901817 @default.
- W3162178111 hasAuthorship W3162178111A5057660160 @default.
- W3162178111 hasAuthorship W3162178111A5082093033 @default.
- W3162178111 hasConcept C121608353 @default.
- W3162178111 hasConcept C126322002 @default.
- W3162178111 hasConcept C126838900 @default.
- W3162178111 hasConcept C143409427 @default.
- W3162178111 hasConcept C2775934546 @default.
- W3162178111 hasConcept C2776235491 @default.
- W3162178111 hasConcept C2780192828 @default.
- W3162178111 hasConcept C2989005 @default.
- W3162178111 hasConcept C71924100 @default.
- W3162178111 hasConceptScore W3162178111C121608353 @default.
- W3162178111 hasConceptScore W3162178111C126322002 @default.
- W3162178111 hasConceptScore W3162178111C126838900 @default.
- W3162178111 hasConceptScore W3162178111C143409427 @default.
- W3162178111 hasConceptScore W3162178111C2775934546 @default.
- W3162178111 hasConceptScore W3162178111C2776235491 @default.
- W3162178111 hasConceptScore W3162178111C2780192828 @default.
- W3162178111 hasConceptScore W3162178111C2989005 @default.
- W3162178111 hasConceptScore W3162178111C71924100 @default.
- W3162178111 hasFunder F4320306163 @default.
- W3162178111 hasIssue "5" @default.
- W3162178111 hasLocation W31621781111 @default.
- W3162178111 hasLocation W31621781112 @default.
- W3162178111 hasOpenAccess W3162178111 @default.
- W3162178111 hasPrimaryLocation W31621781111 @default.
- W3162178111 hasRelatedWork W2046981875 @default.
- W3162178111 hasRelatedWork W2064643060 @default.
- W3162178111 hasRelatedWork W2145420319 @default.
- W3162178111 hasRelatedWork W2153860297 @default.
- W3162178111 hasRelatedWork W2273540743 @default.
- W3162178111 hasRelatedWork W2410191098 @default.
- W3162178111 hasRelatedWork W2566665866 @default.
- W3162178111 hasRelatedWork W2599589207 @default.