Matches in SemOpenAlex for { <https://semopenalex.org/work/W3162178402> ?p ?o ?g. }
- W3162178402 abstract "In this PhD thesis, we develop models for the numerical simulation of epitaxial crystal growth, as realized, e.g., in molecular beam epitaxy (MBE). The basic idea is to use a discrete lattice gas representation of the crystal structure, and to apply kinetic Monte Carlo (KMC) simulations for the description of the growth dynamics. The main advantage of the KMC approach is the possibility to account for atomistic details and at the same time cover MBE relevant time scales in the simulation. In chapter 1, we describe the principles of MBE, pointing out relevant physical processes and the influence of experimental control parameters. We discuss various methods used in the theoretical description of epitaxial growth. Subsequently, the underlying concepts of the KMC method and the lattice gas approach are presented. Important aspects concerning the design of a lattice gas model are considered, e.g. the solid-on-solid approximation or the choice of an appropriate lattice topology. A key element of any KMC simulation is the selection of allowed events and the evaluation of Arrhenius rates for thermally activated processes. We discuss simplifying schemes that are used to approximate the corresponding energy barriers if detailed knowledge about the barriers is not available. Finally, the efficient implementation of the MC kinetics using a rejection-free algorithm is described. In chapter 2, we present a solid-on-solid lattice gas model which aims at the description of II-VI(001) semiconductor surfaces like CdTe(001). The model accounts for the zincblende structure and the relevant surface reconstructions of Cd- and Te-terminated surfaces. Particles at the surface interact via anisotropic nearest and next nearest neighbor interactions, whereas interactions in the bulk are isotropic. The anisotropic surface interactions reflect known properties of CdTe(001) like the small energy difference between the c(2x2) and (2x1) vacancy structures of Cd-terminated surfaces. A key element of the model is the presence of additional Te atoms in a weakly bound Te* state, which is motivated by experimental observations of Te coverages exceeding one monolayer at low temperatures and high Te fluxes. The true mechanism of binding excess Te to the surface is still unclear. Here, we use a mean-field approach assuming a Te* reservoir with limited occupation. In chapter 3, we perform KMC simulations of atomic layer epitaxy (ALE) of CdTe(001). We study the self-regulation of the ALE growth rate and demonstrate how the interplay of the Te* reservoir occupation with the surface kinetics results in two different regimes: at high temperatures the growth rate is limited to one half layer of CdTe per ALE cycle, whereas at low enough temperatures each cycle adds a complete layer. The temperature where the transition between the two regimes occurs depends mainly on the particle fluxes. The temperature dependence of the growth rate and the flux dependence of the transition temperature are in good qualitative agreement with experimental results. Comparing the macroscopic activation energy for Te* desorption in our model with experimental values we find semiquantitative agreement. In chapter 4, we study the formation of nanostructures with alternating stripes during submonolayer heteroepitaxy of two different adsorbate species on a given substrate. We evaluate the influence of two mechanisms: kinetic segregation due to chemically induced diffusion barriers, and strain relaxation by alternating arrangement of the adsorbate species. KMC simulations of a simple cubic lattice gas with weak inter-species binding energy show that kinetic effects are sufficient to account for stripe formation during growth. The dependence of the stripe width on control parameters is investigated. We find an Arrhenius temperature dependence, in agreement with experimental investigations of phase separation in binary or ternary material systems. Canonical MC simulations show that the observed stripes are not stable under equilibrium conditions: the adsorbate species separate into very large domains. Off-lattice simulations which account for the lattice misfit of the involved particle species show that, under equilibrium conditions, the competition between binding and strain energy results in regular stripe patterns with a well-defined width depending on both misfit and binding energies. In KMC simulations, the stripe-formation and the experimentally reported ramification of adsorbate islands are reproduced. To clarify the origin of the island ramification, we investigate an enhanced lattice gas model whose parameters are fitted to match characteristic off-lattice diffusion barriers. The simulation results show that a satisfactory explanation of experimental observations within the lattice gas framework requires a detailed incorporation of long-range elastic interactions. In the appendix we discuss supplementary topics related to the lattice gas simulations in chapter 4." @default.
- W3162178402 created "2021-05-24" @default.
- W3162178402 creator A5088156767 @default.
- W3162178402 date "2004-01-01" @default.
- W3162178402 modified "2023-09-24" @default.
- W3162178402 title "Lattice gas models and simulations of epitaxial growth" @default.
- W3162178402 cites W107188161 @default.
- W3162178402 cites W118266248 @default.
- W3162178402 cites W1504770578 @default.
- W3162178402 cites W1506229087 @default.
- W3162178402 cites W1553885333 @default.
- W3162178402 cites W1559266137 @default.
- W3162178402 cites W1599421969 @default.
- W3162178402 cites W1605771617 @default.
- W3162178402 cites W1619131711 @default.
- W3162178402 cites W1640888000 @default.
- W3162178402 cites W1971179163 @default.
- W3162178402 cites W1980306644 @default.
- W3162178402 cites W1984750847 @default.
- W3162178402 cites W1985774677 @default.
- W3162178402 cites W1990522939 @default.
- W3162178402 cites W1990940372 @default.
- W3162178402 cites W1999145580 @default.
- W3162178402 cites W2003083671 @default.
- W3162178402 cites W2004284586 @default.
- W3162178402 cites W2006680786 @default.
- W3162178402 cites W2018420860 @default.
- W3162178402 cites W2034466075 @default.
- W3162178402 cites W2043650759 @default.
- W3162178402 cites W2052482410 @default.
- W3162178402 cites W2055441710 @default.
- W3162178402 cites W2056456773 @default.
- W3162178402 cites W2060689060 @default.
- W3162178402 cites W2060949351 @default.
- W3162178402 cites W2061279491 @default.
- W3162178402 cites W2061401558 @default.
- W3162178402 cites W2065311056 @default.
- W3162178402 cites W2070105548 @default.
- W3162178402 cites W2081292565 @default.
- W3162178402 cites W2084882685 @default.
- W3162178402 cites W2090719107 @default.
- W3162178402 cites W2090902457 @default.
- W3162178402 cites W2095938967 @default.
- W3162178402 cites W2124745044 @default.
- W3162178402 cites W2137971290 @default.
- W3162178402 cites W2147415793 @default.
- W3162178402 cites W2273717831 @default.
- W3162178402 cites W3023916515 @default.
- W3162178402 cites W390897399 @default.
- W3162178402 hasPublicationYear "2004" @default.
- W3162178402 type Work @default.
- W3162178402 sameAs 3162178402 @default.
- W3162178402 citedByCount "1" @default.
- W3162178402 crossrefType "journal-article" @default.
- W3162178402 hasAuthorship W3162178402A5088156767 @default.
- W3162178402 hasConcept C105795698 @default.
- W3162178402 hasConcept C110738630 @default.
- W3162178402 hasConcept C115624301 @default.
- W3162178402 hasConcept C121332964 @default.
- W3162178402 hasConcept C121864883 @default.
- W3162178402 hasConcept C171250308 @default.
- W3162178402 hasConcept C185592680 @default.
- W3162178402 hasConcept C192562407 @default.
- W3162178402 hasConcept C19499675 @default.
- W3162178402 hasConcept C24890656 @default.
- W3162178402 hasConcept C2779227376 @default.
- W3162178402 hasConcept C2781204021 @default.
- W3162178402 hasConcept C33923547 @default.
- W3162178402 hasConcept C3792809 @default.
- W3162178402 hasConcept C45786274 @default.
- W3162178402 hasConcept C8010536 @default.
- W3162178402 hasConceptScore W3162178402C105795698 @default.
- W3162178402 hasConceptScore W3162178402C110738630 @default.
- W3162178402 hasConceptScore W3162178402C115624301 @default.
- W3162178402 hasConceptScore W3162178402C121332964 @default.
- W3162178402 hasConceptScore W3162178402C121864883 @default.
- W3162178402 hasConceptScore W3162178402C171250308 @default.
- W3162178402 hasConceptScore W3162178402C185592680 @default.
- W3162178402 hasConceptScore W3162178402C192562407 @default.
- W3162178402 hasConceptScore W3162178402C19499675 @default.
- W3162178402 hasConceptScore W3162178402C24890656 @default.
- W3162178402 hasConceptScore W3162178402C2779227376 @default.
- W3162178402 hasConceptScore W3162178402C2781204021 @default.
- W3162178402 hasConceptScore W3162178402C33923547 @default.
- W3162178402 hasConceptScore W3162178402C3792809 @default.
- W3162178402 hasConceptScore W3162178402C45786274 @default.
- W3162178402 hasConceptScore W3162178402C8010536 @default.
- W3162178402 hasLocation W31621784021 @default.
- W3162178402 hasOpenAccess W3162178402 @default.
- W3162178402 hasPrimaryLocation W31621784021 @default.
- W3162178402 hasRelatedWork W1559266137 @default.
- W3162178402 hasRelatedWork W174854985 @default.
- W3162178402 hasRelatedWork W1822354271 @default.
- W3162178402 hasRelatedWork W1971765334 @default.
- W3162178402 hasRelatedWork W1973729952 @default.
- W3162178402 hasRelatedWork W2018236080 @default.
- W3162178402 hasRelatedWork W2048740045 @default.
- W3162178402 hasRelatedWork W2053538708 @default.
- W3162178402 hasRelatedWork W2054768455 @default.
- W3162178402 hasRelatedWork W2135773051 @default.