Matches in SemOpenAlex for { <https://semopenalex.org/work/W3162196660> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W3162196660 endingPage "1514" @default.
- W3162196660 startingPage "1475" @default.
- W3162196660 abstract "Let (V, ω) be an orthosymplectic ℤ2-graded vector space and let 𝔤:= 𝔤𝔬𝔰𝔭 (V, ω) denote the Lie superalgebra of similitudes of (V, ω). It is known that as a 𝔤-module, the space (V ) of superpolynomials on V is completely reducible, unless dim ( {V}_{overline{mathrm{o}}} ) and dim ( {V}_{overline{1}} ) are positive even integers and dim ( {V}_{overline{mathrm{O}}}le dim {V}_{overline{1}} ). When (V ) is not a completely reducible 𝔤-module, we construct a natural basis ( {left{{D}_{leftthreetimes}right}}_{leftthreetimes in mathcal{T}} ) of “Capelli operators” for the algebra (V ) 𝔤 of 𝔤 -invariant superpolynomial superdifferential operators on V , where the index set 𝒯 is the set of integer partitions of length at most two. We compute the action of the operators ( {left{{D}_{leftthreetimes}right}}_{leftthreetimes in mathcal{T}} ) on maximal indecomposable components of (V ) explicitly, in terms of Knop–Sahi interpolation polynomials. Our results show that, unlike the cases where (V ) is completely reducible, the eigenvalues of a subfamily of the {D⋋} are not given by specializing the Knop–Sahi polynomials. Rather, the formulas for these eigenvalues involve suitably regularized forms of these polynomials. This is in contrast with what occurs for previously studied Capelli operators. In addition, we demonstrate a close relationship between our eigenvalue formulas for this subfamily of Capelli operators and the Dougall–Ramanujan hypergeometric identity.We also transcend our results on the eigenvalues of Capelli operators to the Deligne category Rep (Ot). More precisely, we define categorical Capelli operators ( {left{{D}_{t,leftthreetimes}right}}_{leftthreetimes in mathcal{T}} ) that induce morphisms of indecomposable components of symmetric powers of Vt, where Vt is the generating object of Rep (Ot). We obtain formulas for the eigenvalue polynomials associated to the ( {left{{D}_{t,leftthreetimes}right}}_{leftthreetimes in mathcal{T}} ) that are analogous to our results for the operators ( {left{{D}_{leftthreetimes}right}}_{leftthreetimes in mathcal{T}} )." @default.
- W3162196660 created "2021-05-24" @default.
- W3162196660 creator A5004558261 @default.
- W3162196660 creator A5058000867 @default.
- W3162196660 creator A5084368031 @default.
- W3162196660 date "2021-05-12" @default.
- W3162196660 modified "2023-09-24" @default.
- W3162196660 title "CAPELLI OPERATORS FOR SPHERICAL SUPERHARMONICS AND THE DOUGALL–RAMANUJAN IDENTITY" @default.
- W3162196660 cites W1502291261 @default.
- W3162196660 cites W1535470192 @default.
- W3162196660 cites W1571257578 @default.
- W3162196660 cites W1984921260 @default.
- W3162196660 cites W1985966811 @default.
- W3162196660 cites W2000490553 @default.
- W3162196660 cites W2002226076 @default.
- W3162196660 cites W2087430514 @default.
- W3162196660 cites W2752466779 @default.
- W3162196660 cites W2883911669 @default.
- W3162196660 cites W2962832373 @default.
- W3162196660 cites W2962983448 @default.
- W3162196660 cites W2963867534 @default.
- W3162196660 cites W2988332831 @default.
- W3162196660 cites W2993721087 @default.
- W3162196660 cites W3011083842 @default.
- W3162196660 cites W3106292148 @default.
- W3162196660 cites W36837671 @default.
- W3162196660 cites W4234702864 @default.
- W3162196660 cites W4236539388 @default.
- W3162196660 cites W4253594281 @default.
- W3162196660 doi "https://doi.org/10.1007/s00031-021-09655-y" @default.
- W3162196660 hasPublicationYear "2021" @default.
- W3162196660 type Work @default.
- W3162196660 sameAs 3162196660 @default.
- W3162196660 citedByCount "0" @default.
- W3162196660 crossrefType "journal-article" @default.
- W3162196660 hasAuthorship W3162196660A5004558261 @default.
- W3162196660 hasAuthorship W3162196660A5058000867 @default.
- W3162196660 hasAuthorship W3162196660A5084368031 @default.
- W3162196660 hasBestOaLocation W31621966602 @default.
- W3162196660 hasConcept C114614502 @default.
- W3162196660 hasConcept C121332964 @default.
- W3162196660 hasConcept C131220774 @default.
- W3162196660 hasConcept C13336665 @default.
- W3162196660 hasConcept C158693339 @default.
- W3162196660 hasConcept C202444582 @default.
- W3162196660 hasConcept C33923547 @default.
- W3162196660 hasConcept C62520636 @default.
- W3162196660 hasConceptScore W3162196660C114614502 @default.
- W3162196660 hasConceptScore W3162196660C121332964 @default.
- W3162196660 hasConceptScore W3162196660C131220774 @default.
- W3162196660 hasConceptScore W3162196660C13336665 @default.
- W3162196660 hasConceptScore W3162196660C158693339 @default.
- W3162196660 hasConceptScore W3162196660C202444582 @default.
- W3162196660 hasConceptScore W3162196660C33923547 @default.
- W3162196660 hasConceptScore W3162196660C62520636 @default.
- W3162196660 hasIssue "4" @default.
- W3162196660 hasLocation W31621966601 @default.
- W3162196660 hasLocation W31621966602 @default.
- W3162196660 hasOpenAccess W3162196660 @default.
- W3162196660 hasPrimaryLocation W31621966601 @default.
- W3162196660 hasRelatedWork W131379581 @default.
- W3162196660 hasRelatedWork W1713779392 @default.
- W3162196660 hasRelatedWork W2025976780 @default.
- W3162196660 hasRelatedWork W2036434814 @default.
- W3162196660 hasRelatedWork W2041674287 @default.
- W3162196660 hasRelatedWork W2154981854 @default.
- W3162196660 hasRelatedWork W2366404817 @default.
- W3162196660 hasRelatedWork W2606293328 @default.
- W3162196660 hasRelatedWork W970984384 @default.
- W3162196660 hasRelatedWork W2133896308 @default.
- W3162196660 hasVolume "27" @default.
- W3162196660 isParatext "false" @default.
- W3162196660 isRetracted "false" @default.
- W3162196660 magId "3162196660" @default.
- W3162196660 workType "article" @default.