Matches in SemOpenAlex for { <https://semopenalex.org/work/W3162249503> ?p ?o ?g. }
- W3162249503 abstract "Magnitude estimation is a vital task within earthquake early warning (EEW) systems (EEWSs). To improve the magnitude determination accuracy after P-wave arrival, we introduce an advanced magnitude prediction model that uses a deep convolutional neural network for earthquake magnitude estimation (DCNN-M). In this paper, we use the inland strong-motion data obtained from the Japan Kyoshin Network (K-NET) to calculate the input parameters of the DCNN-M model. The DCNN-M model uses 12 parameters extracted from 3 s of seismic data recorded after P-wave arrival as the input, four convolutional layers, four pooling layers, four batch normalization layers, three fully connected layers, the Adam optimizer, and an output. Our results show that the standard deviation of the magnitude estimation error of the DCNN-M model is 0.31, which is significantly less than the values of 1.56 and 0.42 for the τ c method and P d method, respectively. In addition, the magnitude prediction error of the DCNN-M model is not affected by variations in the epicentral distance. The DCNN-M model has considerable potential application in EEWSs in Japan." @default.
- W3162249503 created "2021-05-24" @default.
- W3162249503 creator A5009695362 @default.
- W3162249503 creator A5017774638 @default.
- W3162249503 creator A5046270625 @default.
- W3162249503 creator A5082178566 @default.
- W3162249503 date "2021-05-13" @default.
- W3162249503 modified "2023-10-11" @default.
- W3162249503 title "Magnitude Estimation for Earthquake Early Warning Using a Deep Convolutional Neural Network" @default.
- W3162249503 cites W1762132624 @default.
- W3162249503 cites W1837022943 @default.
- W3162249503 cites W1972451532 @default.
- W3162249503 cites W2003448346 @default.
- W3162249503 cites W2013203422 @default.
- W3162249503 cites W2027613875 @default.
- W3162249503 cites W2032692841 @default.
- W3162249503 cites W2042652790 @default.
- W3162249503 cites W2060748642 @default.
- W3162249503 cites W2063441759 @default.
- W3162249503 cites W2063996167 @default.
- W3162249503 cites W2081424662 @default.
- W3162249503 cites W2083473856 @default.
- W3162249503 cites W2086820490 @default.
- W3162249503 cites W2088833819 @default.
- W3162249503 cites W2097251951 @default.
- W3162249503 cites W2098769624 @default.
- W3162249503 cites W2098941059 @default.
- W3162249503 cites W2101189952 @default.
- W3162249503 cites W2104999515 @default.
- W3162249503 cites W2105328355 @default.
- W3162249503 cites W2106812589 @default.
- W3162249503 cites W2109204669 @default.
- W3162249503 cites W2112907801 @default.
- W3162249503 cites W2120364956 @default.
- W3162249503 cites W2147276353 @default.
- W3162249503 cites W2313951380 @default.
- W3162249503 cites W2318603683 @default.
- W3162249503 cites W2406813203 @default.
- W3162249503 cites W2564607102 @default.
- W3162249503 cites W2598383768 @default.
- W3162249503 cites W2762410434 @default.
- W3162249503 cites W2889230839 @default.
- W3162249503 cites W2922909036 @default.
- W3162249503 cites W2972651431 @default.
- W3162249503 cites W3006351417 @default.
- W3162249503 cites W3015139480 @default.
- W3162249503 doi "https://doi.org/10.3389/feart.2021.653226" @default.
- W3162249503 hasPublicationYear "2021" @default.
- W3162249503 type Work @default.
- W3162249503 sameAs 3162249503 @default.
- W3162249503 citedByCount "17" @default.
- W3162249503 countsByYear W31622495032021 @default.
- W3162249503 countsByYear W31622495032022 @default.
- W3162249503 countsByYear W31622495032023 @default.
- W3162249503 crossrefType "journal-article" @default.
- W3162249503 hasAuthorship W3162249503A5009695362 @default.
- W3162249503 hasAuthorship W3162249503A5017774638 @default.
- W3162249503 hasAuthorship W3162249503A5046270625 @default.
- W3162249503 hasAuthorship W3162249503A5082178566 @default.
- W3162249503 hasBestOaLocation W31622495031 @default.
- W3162249503 hasConcept C105795698 @default.
- W3162249503 hasConcept C11413529 @default.
- W3162249503 hasConcept C121332964 @default.
- W3162249503 hasConcept C126691448 @default.
- W3162249503 hasConcept C127313418 @default.
- W3162249503 hasConcept C1276947 @default.
- W3162249503 hasConcept C136886441 @default.
- W3162249503 hasConcept C144024400 @default.
- W3162249503 hasConcept C153180895 @default.
- W3162249503 hasConcept C154945302 @default.
- W3162249503 hasConcept C162324750 @default.
- W3162249503 hasConcept C187736073 @default.
- W3162249503 hasConcept C19165224 @default.
- W3162249503 hasConcept C22679943 @default.
- W3162249503 hasConcept C2524010 @default.
- W3162249503 hasConcept C2992890811 @default.
- W3162249503 hasConcept C33923547 @default.
- W3162249503 hasConcept C41008148 @default.
- W3162249503 hasConcept C70437156 @default.
- W3162249503 hasConcept C81363708 @default.
- W3162249503 hasConcept C96250715 @default.
- W3162249503 hasConcept C99844830 @default.
- W3162249503 hasConceptScore W3162249503C105795698 @default.
- W3162249503 hasConceptScore W3162249503C11413529 @default.
- W3162249503 hasConceptScore W3162249503C121332964 @default.
- W3162249503 hasConceptScore W3162249503C126691448 @default.
- W3162249503 hasConceptScore W3162249503C127313418 @default.
- W3162249503 hasConceptScore W3162249503C1276947 @default.
- W3162249503 hasConceptScore W3162249503C136886441 @default.
- W3162249503 hasConceptScore W3162249503C144024400 @default.
- W3162249503 hasConceptScore W3162249503C153180895 @default.
- W3162249503 hasConceptScore W3162249503C154945302 @default.
- W3162249503 hasConceptScore W3162249503C162324750 @default.
- W3162249503 hasConceptScore W3162249503C187736073 @default.
- W3162249503 hasConceptScore W3162249503C19165224 @default.
- W3162249503 hasConceptScore W3162249503C22679943 @default.
- W3162249503 hasConceptScore W3162249503C2524010 @default.
- W3162249503 hasConceptScore W3162249503C2992890811 @default.
- W3162249503 hasConceptScore W3162249503C33923547 @default.
- W3162249503 hasConceptScore W3162249503C41008148 @default.