Matches in SemOpenAlex for { <https://semopenalex.org/work/W3162353324> ?p ?o ?g. }
- W3162353324 endingPage "229" @default.
- W3162353324 startingPage "219" @default.
- W3162353324 abstract "Objectives : In this study, deep learning models of artificial neural network (ANN) and one-dimension convolutional neural networks (1D-CNN) were compared to predict nonlinear wind power generation at Yeongheung wind power plant.Methods : The study site was Yeongheung-do, which has a 46 MW wind power plant. Hourly wind power and meteorological data from January to December 2018 were collected. After pre-processing with standardscaler, the training data were 64%, the validation data were 16%, and the test data were 20%. The optimum input variables of the model were selected using literature, and trial and error method. Rectified linear unit was used as the activation function. Hyperparameters were adjusted by trial and error method to optimized models. To compare the optimized models, the coefficient of determination (R2), mean absolute error (MAE), and root mean square error (RMSE) were used as the performance efficiency. Both ANN, and 1D-CNN were imported from the Keras library, and all of the performance efficiency was imported from the Scikit-learn library.Results and Discussion : The optimized input variables in this study were wind speed, wind direction, temperature, and humidity. The optimized ANN performance was R2=0.848, MAE=1.054, and RMSE=1.616, and the hyperparameters were 8 hidden layers with 100 nodes in each layer. The optimized 1D-CNN (R2=0.875, MAE=0.982, and RMSE=1.583) had 4 convolutional layers and the number of filters were 64, 128, 64, and 32 in order from the first layer, and one hidden fully connected layer had 100 nodes. The 1D-CNN had higher R2, and lower MAE and RMSE than the ANN. Therefore, the 1D-CNN was selected as the optimized model to predict wind generation of the Yeongheung wind power plant.Conclusions : The optimized 1D-CNN model in this study was more effective in predicting the Yeongheung wind power plant than the ANN. The optimal input variables were wind speed, wind direction, temperature, and humidity." @default.
- W3162353324 created "2021-05-24" @default.
- W3162353324 creator A5010808931 @default.
- W3162353324 creator A5039798646 @default.
- W3162353324 creator A5063389860 @default.
- W3162353324 creator A5071948175 @default.
- W3162353324 creator A5088837972 @default.
- W3162353324 date "2021-04-30" @default.
- W3162353324 modified "2023-10-17" @default.
- W3162353324 title "Selection of Input Variables and Comparison of Artificial Neural Networks and One-Dimensional Convolutional Neural Networks for Prediction of Wind Power Generation in Yeongheung Wind Power Plant" @default.
- W3162353324 cites W1989092102 @default.
- W3162353324 cites W1989872429 @default.
- W3162353324 cites W1999338656 @default.
- W3162353324 cites W2004145388 @default.
- W3162353324 cites W2008300604 @default.
- W3162353324 cites W2011893501 @default.
- W3162353324 cites W2039238531 @default.
- W3162353324 cites W2065863393 @default.
- W3162353324 cites W2077592630 @default.
- W3162353324 cites W2100485669 @default.
- W3162353324 cites W2604695176 @default.
- W3162353324 cites W2606105023 @default.
- W3162353324 cites W2612859542 @default.
- W3162353324 cites W2751698537 @default.
- W3162353324 cites W2770058012 @default.
- W3162353324 cites W2789379822 @default.
- W3162353324 cites W2793695278 @default.
- W3162353324 cites W2800437387 @default.
- W3162353324 cites W2801112441 @default.
- W3162353324 cites W2901358399 @default.
- W3162353324 cites W2903162817 @default.
- W3162353324 cites W2919841204 @default.
- W3162353324 cites W2944245994 @default.
- W3162353324 cites W2960560113 @default.
- W3162353324 cites W2971547304 @default.
- W3162353324 cites W2977676336 @default.
- W3162353324 cites W2980867051 @default.
- W3162353324 cites W2989494743 @default.
- W3162353324 cites W2991081473 @default.
- W3162353324 cites W2997330812 @default.
- W3162353324 cites W3003714201 @default.
- W3162353324 cites W3016025798 @default.
- W3162353324 cites W3017210924 @default.
- W3162353324 cites W3018059424 @default.
- W3162353324 cites W3018589140 @default.
- W3162353324 cites W3037107721 @default.
- W3162353324 cites W3041588233 @default.
- W3162353324 cites W3060850527 @default.
- W3162353324 cites W3081758339 @default.
- W3162353324 cites W3082737753 @default.
- W3162353324 doi "https://doi.org/10.4491/ksee.2021.43.4.219" @default.
- W3162353324 hasPublicationYear "2021" @default.
- W3162353324 type Work @default.
- W3162353324 sameAs 3162353324 @default.
- W3162353324 citedByCount "1" @default.
- W3162353324 countsByYear W31623533242022 @default.
- W3162353324 crossrefType "journal-article" @default.
- W3162353324 hasAuthorship W3162353324A5010808931 @default.
- W3162353324 hasAuthorship W3162353324A5039798646 @default.
- W3162353324 hasAuthorship W3162353324A5063389860 @default.
- W3162353324 hasAuthorship W3162353324A5071948175 @default.
- W3162353324 hasAuthorship W3162353324A5088837972 @default.
- W3162353324 hasBestOaLocation W31623533241 @default.
- W3162353324 hasConcept C105795698 @default.
- W3162353324 hasConcept C11413529 @default.
- W3162353324 hasConcept C119599485 @default.
- W3162353324 hasConcept C127413603 @default.
- W3162353324 hasConcept C139945424 @default.
- W3162353324 hasConcept C153180895 @default.
- W3162353324 hasConcept C153294291 @default.
- W3162353324 hasConcept C154945302 @default.
- W3162353324 hasConcept C161067210 @default.
- W3162353324 hasConcept C205649164 @default.
- W3162353324 hasConcept C33923547 @default.
- W3162353324 hasConcept C41008148 @default.
- W3162353324 hasConcept C50644808 @default.
- W3162353324 hasConcept C78600449 @default.
- W3162353324 hasConcept C81363708 @default.
- W3162353324 hasConcept C8642999 @default.
- W3162353324 hasConceptScore W3162353324C105795698 @default.
- W3162353324 hasConceptScore W3162353324C11413529 @default.
- W3162353324 hasConceptScore W3162353324C119599485 @default.
- W3162353324 hasConceptScore W3162353324C127413603 @default.
- W3162353324 hasConceptScore W3162353324C139945424 @default.
- W3162353324 hasConceptScore W3162353324C153180895 @default.
- W3162353324 hasConceptScore W3162353324C153294291 @default.
- W3162353324 hasConceptScore W3162353324C154945302 @default.
- W3162353324 hasConceptScore W3162353324C161067210 @default.
- W3162353324 hasConceptScore W3162353324C205649164 @default.
- W3162353324 hasConceptScore W3162353324C33923547 @default.
- W3162353324 hasConceptScore W3162353324C41008148 @default.
- W3162353324 hasConceptScore W3162353324C50644808 @default.
- W3162353324 hasConceptScore W3162353324C78600449 @default.
- W3162353324 hasConceptScore W3162353324C81363708 @default.
- W3162353324 hasConceptScore W3162353324C8642999 @default.
- W3162353324 hasFunder F4320321248 @default.
- W3162353324 hasIssue "4" @default.
- W3162353324 hasLocation W31623533241 @default.