Matches in SemOpenAlex for { <https://semopenalex.org/work/W3162365847> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W3162365847 endingPage "27" @default.
- W3162365847 startingPage "1" @default.
- W3162365847 abstract "Abstract Understanding core statistical properties and data features in mortality data are fundamental to the development of machine learning methods for demographic and actuarial applications of mortality projection. The study of statistical features in such data forms the basis for classification, regression and forecasting tasks. In particular, the understanding of key statistical structure in such data can aid in improving accuracy in undertaking mortality projection and forecasting when constructing life tables. The ability to accurately forecast mortality is a critical aspect for the study of demography, life insurance product design and pricing, pension planning and insurance-based decision risk management. Though many stylised facts of mortality data have been discussed in the literature, we provide evidence for a novel statistical feature that is pervasive in mortality data at a national level that is as yet unexplored. In this regard, we demonstrate in this work a strong evidence for the existence of long memory features in mortality data, and second that such long memory structures display multifractality as a statistical feature that can act as a discriminator of mortality dynamics by age, gender and country. To achieve this, we first outline the way in which we choose to represent the persistence of long memory from an estimator perspective. We make a natural link between a class of long memory features and an attribute of stochastic processes based on fractional Brownian motion. This allows us to use well established estimators for the Hurst exponent to then robustly and accurately study the long memory features of mortality data. We then introduce to mortality analysis the notion from data science known as multifractality. This allows us to study the long memory persistence features of mortality data on different timescales. We demonstrate its accuracy for sample sizes commensurate with national-level age term structure historical mortality records. A series of synthetic studies as well a comprehensive analysis of real mortality death count data are studied in order to demonstrate the pervasiveness of long memory structures in mortality data, both mono-fractal and multifractal functional features are verified to be present as stylised facts of national-level mortality data for most countries and most age groups by gender. We conclude by demonstrating how such features can be used in kernel clustering and mortality model forecasting to improve these actuarial applications." @default.
- W3162365847 created "2021-05-24" @default.
- W3162365847 creator A5019493141 @default.
- W3162365847 creator A5055096066 @default.
- W3162365847 creator A5087616647 @default.
- W3162365847 date "2021-05-11" @default.
- W3162365847 modified "2023-10-18" @default.
- W3162365847 title "Statistical features of persistence and long memory in mortality data" @default.
- W3162365847 cites W1973694910 @default.
- W3162365847 cites W2031753087 @default.
- W3162365847 cites W2055781590 @default.
- W3162365847 cites W2064197159 @default.
- W3162365847 cites W2071602085 @default.
- W3162365847 cites W2144328044 @default.
- W3162365847 cites W2155074104 @default.
- W3162365847 cites W2165773639 @default.
- W3162365847 cites W2790708350 @default.
- W3162365847 cites W2898264579 @default.
- W3162365847 cites W2951044827 @default.
- W3162365847 cites W3081124633 @default.
- W3162365847 cites W3121942314 @default.
- W3162365847 cites W3126883404 @default.
- W3162365847 cites W4232223522 @default.
- W3162365847 cites W4242671632 @default.
- W3162365847 cites W2806187618 @default.
- W3162365847 doi "https://doi.org/10.1017/s1748499521000129" @default.
- W3162365847 hasPublicationYear "2021" @default.
- W3162365847 type Work @default.
- W3162365847 sameAs 3162365847 @default.
- W3162365847 citedByCount "3" @default.
- W3162365847 countsByYear W31623658472021 @default.
- W3162365847 countsByYear W31623658472023 @default.
- W3162365847 crossrefType "journal-article" @default.
- W3162365847 hasAuthorship W3162365847A5019493141 @default.
- W3162365847 hasAuthorship W3162365847A5055096066 @default.
- W3162365847 hasAuthorship W3162365847A5087616647 @default.
- W3162365847 hasBestOaLocation W31623658471 @default.
- W3162365847 hasConcept C105795698 @default.
- W3162365847 hasConcept C114289077 @default.
- W3162365847 hasConcept C119857082 @default.
- W3162365847 hasConcept C138885662 @default.
- W3162365847 hasConcept C149782125 @default.
- W3162365847 hasConcept C154945302 @default.
- W3162365847 hasConcept C162324750 @default.
- W3162365847 hasConcept C185429906 @default.
- W3162365847 hasConcept C2776401178 @default.
- W3162365847 hasConcept C33923547 @default.
- W3162365847 hasConcept C41008148 @default.
- W3162365847 hasConcept C41895202 @default.
- W3162365847 hasConceptScore W3162365847C105795698 @default.
- W3162365847 hasConceptScore W3162365847C114289077 @default.
- W3162365847 hasConceptScore W3162365847C119857082 @default.
- W3162365847 hasConceptScore W3162365847C138885662 @default.
- W3162365847 hasConceptScore W3162365847C149782125 @default.
- W3162365847 hasConceptScore W3162365847C154945302 @default.
- W3162365847 hasConceptScore W3162365847C162324750 @default.
- W3162365847 hasConceptScore W3162365847C185429906 @default.
- W3162365847 hasConceptScore W3162365847C2776401178 @default.
- W3162365847 hasConceptScore W3162365847C33923547 @default.
- W3162365847 hasConceptScore W3162365847C41008148 @default.
- W3162365847 hasConceptScore W3162365847C41895202 @default.
- W3162365847 hasLocation W31623658471 @default.
- W3162365847 hasOpenAccess W3162365847 @default.
- W3162365847 hasPrimaryLocation W31623658471 @default.
- W3162365847 hasRelatedWork W2961085424 @default.
- W3162365847 hasRelatedWork W3046775127 @default.
- W3162365847 hasRelatedWork W3170094116 @default.
- W3162365847 hasRelatedWork W3209574120 @default.
- W3162365847 hasRelatedWork W4205958290 @default.
- W3162365847 hasRelatedWork W4285260836 @default.
- W3162365847 hasRelatedWork W4286629047 @default.
- W3162365847 hasRelatedWork W4306321456 @default.
- W3162365847 hasRelatedWork W4306674287 @default.
- W3162365847 hasRelatedWork W4224009465 @default.
- W3162365847 isParatext "false" @default.
- W3162365847 isRetracted "false" @default.
- W3162365847 magId "3162365847" @default.
- W3162365847 workType "article" @default.