Matches in SemOpenAlex for { <https://semopenalex.org/work/W3162372923> ?p ?o ?g. }
- W3162372923 endingPage "546" @default.
- W3162372923 startingPage "531" @default.
- W3162372923 abstract "The identification of parameters of spatially variant blurs given a clean image and its blurry noisy version is a challenging inverse problem of interest in many application fields, such as biological microscopy and astronomical imaging. In this paper, we consider a parametric model of the blur and introduce an 1D state-space model to describe the statistical dependence among the neighboring kernels. We apply a Bayesian approach to estimate the posterior distribution of the kernel parameters given the available data. Since this posterior is intractable for most realistic models, we propose to approximate it through a sequential Monte Carlo approach by processing all data in a sequential and efficient manner. Additionally, we propose a new sampling method to alleviate the particle degeneracy problem, which is present in approximate Bayesian filtering, particularly in challenging concentrated posterior distributions. The considered method allows us to process sequentially image patches at a reasonable computational and memory costs. Moreover, the probabilistic approach we adopt in this paper provides uncertainty quantification which is useful for image restoration. The practical experimental results illustrate the improved estimation performance of our novel approach, demonstrating also the benefits of exploiting the spatial structure the parametric blurs in the considered models." @default.
- W3162372923 created "2021-05-24" @default.
- W3162372923 creator A5028193247 @default.
- W3162372923 creator A5062777204 @default.
- W3162372923 creator A5085691944 @default.
- W3162372923 date "2021-01-01" @default.
- W3162372923 modified "2023-10-18" @default.
- W3162372923 title "Probabilistic Modeling and Inference for Sequential Space-Varying Blur Identification" @default.
- W3162372923 cites W1485925404 @default.
- W3162372923 cites W1513873506 @default.
- W3162372923 cites W1550634749 @default.
- W3162372923 cites W1592970628 @default.
- W3162372923 cites W172951150 @default.
- W3162372923 cites W1794603784 @default.
- W3162372923 cites W1970958080 @default.
- W3162372923 cites W1974618217 @default.
- W3162372923 cites W1989309985 @default.
- W3162372923 cites W1993479909 @default.
- W3162372923 cites W2023827232 @default.
- W3162372923 cites W2026214447 @default.
- W3162372923 cites W2030148064 @default.
- W3162372923 cites W2031814549 @default.
- W3162372923 cites W2034137107 @default.
- W3162372923 cites W2040196349 @default.
- W3162372923 cites W2047832282 @default.
- W3162372923 cites W205133401 @default.
- W3162372923 cites W2053189442 @default.
- W3162372923 cites W2064395648 @default.
- W3162372923 cites W2078121638 @default.
- W3162372923 cites W2080875179 @default.
- W3162372923 cites W2098613108 @default.
- W3162372923 cites W2100556411 @default.
- W3162372923 cites W2105934661 @default.
- W3162372923 cites W2106599423 @default.
- W3162372923 cites W2120280503 @default.
- W3162372923 cites W2129518598 @default.
- W3162372923 cites W2134856340 @default.
- W3162372923 cites W2144124341 @default.
- W3162372923 cites W2146404768 @default.
- W3162372923 cites W2147357149 @default.
- W3162372923 cites W2147401053 @default.
- W3162372923 cites W2160057126 @default.
- W3162372923 cites W2161804069 @default.
- W3162372923 cites W2163140044 @default.
- W3162372923 cites W2170216188 @default.
- W3162372923 cites W2171050536 @default.
- W3162372923 cites W2179435707 @default.
- W3162372923 cites W2233113827 @default.
- W3162372923 cites W2253696294 @default.
- W3162372923 cites W2297596928 @default.
- W3162372923 cites W2337998167 @default.
- W3162372923 cites W2473270651 @default.
- W3162372923 cites W2515712336 @default.
- W3162372923 cites W2565929657 @default.
- W3162372923 cites W2755451093 @default.
- W3162372923 cites W2795157109 @default.
- W3162372923 cites W2903008802 @default.
- W3162372923 cites W2940476075 @default.
- W3162372923 cites W2940652807 @default.
- W3162372923 cites W2962919464 @default.
- W3162372923 cites W2963363119 @default.
- W3162372923 cites W2963429563 @default.
- W3162372923 cites W2995112602 @default.
- W3162372923 cites W3014242623 @default.
- W3162372923 cites W3023341321 @default.
- W3162372923 cites W3047380542 @default.
- W3162372923 cites W3099785694 @default.
- W3162372923 cites W3104509149 @default.
- W3162372923 cites W3121580830 @default.
- W3162372923 cites W4255133955 @default.
- W3162372923 cites W4292691288 @default.
- W3162372923 doi "https://doi.org/10.1109/tci.2021.3081059" @default.
- W3162372923 hasPublicationYear "2021" @default.
- W3162372923 type Work @default.
- W3162372923 sameAs 3162372923 @default.
- W3162372923 citedByCount "3" @default.
- W3162372923 countsByYear W31623729232021 @default.
- W3162372923 countsByYear W31623729232022 @default.
- W3162372923 countsByYear W31623729232023 @default.
- W3162372923 crossrefType "journal-article" @default.
- W3162372923 hasAuthorship W3162372923A5028193247 @default.
- W3162372923 hasAuthorship W3162372923A5062777204 @default.
- W3162372923 hasAuthorship W3162372923A5085691944 @default.
- W3162372923 hasBestOaLocation W31623729232 @default.
- W3162372923 hasConcept C105795698 @default.
- W3162372923 hasConcept C107673813 @default.
- W3162372923 hasConcept C11413529 @default.
- W3162372923 hasConcept C114614502 @default.
- W3162372923 hasConcept C117251300 @default.
- W3162372923 hasConcept C134306372 @default.
- W3162372923 hasConcept C135252773 @default.
- W3162372923 hasConcept C154945302 @default.
- W3162372923 hasConcept C157286648 @default.
- W3162372923 hasConcept C160234255 @default.
- W3162372923 hasConcept C2776214188 @default.
- W3162372923 hasConcept C33923547 @default.
- W3162372923 hasConcept C41008148 @default.
- W3162372923 hasConcept C49937458 @default.