Matches in SemOpenAlex for { <https://semopenalex.org/work/W3162443161> ?p ?o ?g. }
- W3162443161 abstract "Anomaly detection and explanation in big volumes of real-world medical data, such as those pertaining to COVID-19, pose some challenges. First, we are dealing with time-series data. Typical time-series data describe behavior of a single object over time. In medical data, we are dealing with time-series data belonging to multiple entities. Thus, there may be multiple subsets of records such that records in each subset, which belong to a single entity are temporally dependent, but the records in different subsets are unrelated. Moreover, the records in a subset contain different types of attributes, some of which must be grouped in a particular manner to make the analysis meaningful. Anomaly detection techniques need to be customized for time-series data belonging to multiple entities. Second, anomaly detection techniques fail to explain the cause of outliers to the experts. This is critical for new diseases and pandemics where current knowledge is insufficient. We propose to address these issues by extending our existing work called IDEAL, which is an LSTM-autoencoder based approach for data quality testing of sequential records, and provides explanations of constraint violations in a manner that is understandable to end-users. The extension (1) uses a novel two-level reshaping technique that splits COVID-19 data sets into multiple temporally-dependent subsequences and (2) adds a data visualization plot to further explain the anomalies and evaluate the level of abnormality of subsequences detected by IDEAL. We performed two systematic evaluation studies for our anomalous subsequence detection. One study uses aggregate data, including the number of cases, deaths, recovered, and percentage of hospitalization rate, collected from a COVID tracking project, New York Times, and Johns Hopkins for the same time period. The other study uses COVID-19 patient medical records obtained from Anschutz Medical Center health data warehouse. The results are promising and indicate that our techniques can be used to detect anomalies in large volumes of real-world unlabeled data whose accuracy or validity is unknown." @default.
- W3162443161 created "2021-05-24" @default.
- W3162443161 creator A5001028658 @default.
- W3162443161 creator A5008904412 @default.
- W3162443161 creator A5056525200 @default.
- W3162443161 creator A5058783149 @default.
- W3162443161 creator A5060507817 @default.
- W3162443161 date "2021-05-19" @default.
- W3162443161 modified "2023-10-02" @default.
- W3162443161 title "Anomaly Detection in COVID-19 Time-Series Data" @default.
- W3162443161 cites W2093606067 @default.
- W3162443161 cites W2144182447 @default.
- W3162443161 cites W2145561180 @default.
- W3162443161 cites W2278984902 @default.
- W3162443161 cites W2322752926 @default.
- W3162443161 cites W2564960719 @default.
- W3162443161 cites W2614041301 @default.
- W3162443161 cites W2618613105 @default.
- W3162443161 cites W2743138268 @default.
- W3162443161 cites W2744106784 @default.
- W3162443161 cites W2753802340 @default.
- W3162443161 cites W2767837247 @default.
- W3162443161 cites W2796130100 @default.
- W3162443161 cites W2809562624 @default.
- W3162443161 cites W2833324965 @default.
- W3162443161 cites W2889323984 @default.
- W3162443161 cites W2891536563 @default.
- W3162443161 cites W2904285708 @default.
- W3162443161 cites W2944851425 @default.
- W3162443161 cites W2950972206 @default.
- W3162443161 cites W2958950562 @default.
- W3162443161 cites W2963166639 @default.
- W3162443161 cites W2974824604 @default.
- W3162443161 cites W2983029853 @default.
- W3162443161 cites W3007062709 @default.
- W3162443161 cites W3008769280 @default.
- W3162443161 cites W3009389929 @default.
- W3162443161 cites W3010336234 @default.
- W3162443161 cites W3017439361 @default.
- W3162443161 cites W3023696618 @default.
- W3162443161 cites W3035598637 @default.
- W3162443161 cites W3039962535 @default.
- W3162443161 cites W3043904603 @default.
- W3162443161 cites W3080933418 @default.
- W3162443161 cites W3081918180 @default.
- W3162443161 cites W3083864010 @default.
- W3162443161 cites W3091978650 @default.
- W3162443161 cites W3104096625 @default.
- W3162443161 cites W3135977745 @default.
- W3162443161 cites W3165807554 @default.
- W3162443161 doi "https://doi.org/10.1007/s42979-021-00658-w" @default.
- W3162443161 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8132285" @default.
- W3162443161 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34027432" @default.
- W3162443161 hasPublicationYear "2021" @default.
- W3162443161 type Work @default.
- W3162443161 sameAs 3162443161 @default.
- W3162443161 citedByCount "9" @default.
- W3162443161 countsByYear W31624431612021 @default.
- W3162443161 countsByYear W31624431612022 @default.
- W3162443161 countsByYear W31624431612023 @default.
- W3162443161 crossrefType "journal-article" @default.
- W3162443161 hasAuthorship W3162443161A5001028658 @default.
- W3162443161 hasAuthorship W3162443161A5008904412 @default.
- W3162443161 hasAuthorship W3162443161A5056525200 @default.
- W3162443161 hasAuthorship W3162443161A5058783149 @default.
- W3162443161 hasAuthorship W3162443161A5060507817 @default.
- W3162443161 hasBestOaLocation W31624431611 @default.
- W3162443161 hasConcept C119857082 @default.
- W3162443161 hasConcept C121332964 @default.
- W3162443161 hasConcept C124101348 @default.
- W3162443161 hasConcept C12997251 @default.
- W3162443161 hasConcept C134306372 @default.
- W3162443161 hasConcept C137877099 @default.
- W3162443161 hasConcept C143724316 @default.
- W3162443161 hasConcept C151406439 @default.
- W3162443161 hasConcept C151730666 @default.
- W3162443161 hasConcept C154945302 @default.
- W3162443161 hasConcept C26873012 @default.
- W3162443161 hasConcept C33923547 @default.
- W3162443161 hasConcept C34388435 @default.
- W3162443161 hasConcept C41008148 @default.
- W3162443161 hasConcept C739882 @default.
- W3162443161 hasConcept C79337645 @default.
- W3162443161 hasConcept C86803240 @default.
- W3162443161 hasConcept C9357733 @default.
- W3162443161 hasConceptScore W3162443161C119857082 @default.
- W3162443161 hasConceptScore W3162443161C121332964 @default.
- W3162443161 hasConceptScore W3162443161C124101348 @default.
- W3162443161 hasConceptScore W3162443161C12997251 @default.
- W3162443161 hasConceptScore W3162443161C134306372 @default.
- W3162443161 hasConceptScore W3162443161C137877099 @default.
- W3162443161 hasConceptScore W3162443161C143724316 @default.
- W3162443161 hasConceptScore W3162443161C151406439 @default.
- W3162443161 hasConceptScore W3162443161C151730666 @default.
- W3162443161 hasConceptScore W3162443161C154945302 @default.
- W3162443161 hasConceptScore W3162443161C26873012 @default.
- W3162443161 hasConceptScore W3162443161C33923547 @default.
- W3162443161 hasConceptScore W3162443161C34388435 @default.
- W3162443161 hasConceptScore W3162443161C41008148 @default.
- W3162443161 hasConceptScore W3162443161C739882 @default.