Matches in SemOpenAlex for { <https://semopenalex.org/work/W3162480795> ?p ?o ?g. }
- W3162480795 endingPage "7368" @default.
- W3162480795 startingPage "7355" @default.
- W3162480795 abstract "Abstract. Optical remote sensing (ORS) combined with the computerized tomography (CT) technique is a powerful tool to retrieve a two-dimensional concentration map over an area under investigation. Whereas medical CT usually uses a beam number of hundreds of thousands, ORS-CT usually uses a beam number of dozens, thus severely limiting the spatial resolution and the quality of the reconstructed map. The smoothness a priori information is, therefore, crucial for ORS-CT. Algorithms that produce smooth reconstructions include smooth basis function minimization, grid translation and multiple grid (GT-MG), and low third derivative (LTD), among which the LTD algorithm is promising because of the fast speed. However, its theoretical basis must be clarified to better understand the characteristics of its smoothness constraints. Moreover, the computational efficiency and reconstruction quality need to be improved for practical applications. This paper first treated the LTD algorithm as a special case of the Tikhonov regularization that uses the approximation of the third-order derivative as the regularization term. Then, to seek more flexible smoothness constraints, we successfully incorporated the smoothness seminorm used in variational interpolation theory into the reconstruction problem. Thus, the smoothing effects can be well understood according to the close relationship between the variational approach and the spline functions. Furthermore, other algorithms can be formulated by using different seminorms. On the basis of this idea, we propose a new minimum curvature (MC) algorithm by using a seminorm approximating the sum of the squares of the curvature, which reduces the number of linear equations to half that in the LTD algorithm. The MC algorithm was compared with the non-negative least square (NNLS), GT-MG, and LTD algorithms by using multiple test maps. The MC algorithm, compared with the LTD algorithm, shows similar performance in terms of reconstruction quality but requires only approximately 65 % the computation time. It is also simpler to implement than the GT-MG algorithm because it directly uses high-resolution grids during the reconstruction process. Compared with the traditional NNLS algorithm, it shows better performance in the following three aspects: (1) the nearness of reconstructed maps is improved by more than 50 %, (2) the peak location accuracy is improved by 1–2 m, and (3) the exposure error is improved by 2 to 5 times. Testing results indicated the effectiveness of the new algorithm according to the variational approach. More specific algorithms could be similarly further formulated and evaluated. This study promotes the practical application of ORS-CT mapping of atmospheric chemicals." @default.
- W3162480795 created "2021-05-24" @default.
- W3162480795 creator A5026512168 @default.
- W3162480795 creator A5042135582 @default.
- W3162480795 date "2021-11-25" @default.
- W3162480795 modified "2023-09-26" @default.
- W3162480795 title "A minimum curvature algorithm for tomographic reconstruction of atmospheric chemicals based on optical remote sensing" @default.
- W3162480795 cites W1971633235 @default.
- W3162480795 cites W1978920236 @default.
- W3162480795 cites W1986903361 @default.
- W3162480795 cites W2003823099 @default.
- W3162480795 cites W2006793180 @default.
- W3162480795 cites W2009678412 @default.
- W3162480795 cites W2019544565 @default.
- W3162480795 cites W2022632927 @default.
- W3162480795 cites W2031016872 @default.
- W3162480795 cites W2032233728 @default.
- W3162480795 cites W2039433334 @default.
- W3162480795 cites W2066801691 @default.
- W3162480795 cites W2072455645 @default.
- W3162480795 cites W2075665712 @default.
- W3162480795 cites W2078843272 @default.
- W3162480795 cites W2089441731 @default.
- W3162480795 cites W2091395190 @default.
- W3162480795 cites W2097926343 @default.
- W3162480795 cites W2098358645 @default.
- W3162480795 cites W2103559027 @default.
- W3162480795 cites W2109388740 @default.
- W3162480795 cites W2118623924 @default.
- W3162480795 cites W2157425580 @default.
- W3162480795 cites W2163937803 @default.
- W3162480795 cites W2220294918 @default.
- W3162480795 cites W2318727115 @default.
- W3162480795 cites W2334721047 @default.
- W3162480795 cites W2800819547 @default.
- W3162480795 cites W4229662544 @default.
- W3162480795 cites W4254174260 @default.
- W3162480795 doi "https://doi.org/10.5194/amt-14-7355-2021" @default.
- W3162480795 hasPublicationYear "2021" @default.
- W3162480795 type Work @default.
- W3162480795 sameAs 3162480795 @default.
- W3162480795 citedByCount "2" @default.
- W3162480795 countsByYear W31624807952022 @default.
- W3162480795 countsByYear W31624807952023 @default.
- W3162480795 crossrefType "journal-article" @default.
- W3162480795 hasAuthorship W3162480795A5026512168 @default.
- W3162480795 hasAuthorship W3162480795A5042135582 @default.
- W3162480795 hasBestOaLocation W31624807951 @default.
- W3162480795 hasConcept C102634674 @default.
- W3162480795 hasConcept C104114177 @default.
- W3162480795 hasConcept C11413529 @default.
- W3162480795 hasConcept C126255220 @default.
- W3162480795 hasConcept C134306372 @default.
- W3162480795 hasConcept C135252773 @default.
- W3162480795 hasConcept C137800194 @default.
- W3162480795 hasConcept C141379421 @default.
- W3162480795 hasConcept C152442038 @default.
- W3162480795 hasConcept C154945302 @default.
- W3162480795 hasConcept C186633575 @default.
- W3162480795 hasConcept C187691185 @default.
- W3162480795 hasConcept C195065555 @default.
- W3162480795 hasConcept C2524010 @default.
- W3162480795 hasConcept C2776135515 @default.
- W3162480795 hasConcept C2779898584 @default.
- W3162480795 hasConcept C31972630 @default.
- W3162480795 hasConcept C33923547 @default.
- W3162480795 hasConcept C3770464 @default.
- W3162480795 hasConcept C41008148 @default.
- W3162480795 hasConcept C5917680 @default.
- W3162480795 hasConceptScore W3162480795C102634674 @default.
- W3162480795 hasConceptScore W3162480795C104114177 @default.
- W3162480795 hasConceptScore W3162480795C11413529 @default.
- W3162480795 hasConceptScore W3162480795C126255220 @default.
- W3162480795 hasConceptScore W3162480795C134306372 @default.
- W3162480795 hasConceptScore W3162480795C135252773 @default.
- W3162480795 hasConceptScore W3162480795C137800194 @default.
- W3162480795 hasConceptScore W3162480795C141379421 @default.
- W3162480795 hasConceptScore W3162480795C152442038 @default.
- W3162480795 hasConceptScore W3162480795C154945302 @default.
- W3162480795 hasConceptScore W3162480795C186633575 @default.
- W3162480795 hasConceptScore W3162480795C187691185 @default.
- W3162480795 hasConceptScore W3162480795C195065555 @default.
- W3162480795 hasConceptScore W3162480795C2524010 @default.
- W3162480795 hasConceptScore W3162480795C2776135515 @default.
- W3162480795 hasConceptScore W3162480795C2779898584 @default.
- W3162480795 hasConceptScore W3162480795C31972630 @default.
- W3162480795 hasConceptScore W3162480795C33923547 @default.
- W3162480795 hasConceptScore W3162480795C3770464 @default.
- W3162480795 hasConceptScore W3162480795C41008148 @default.
- W3162480795 hasConceptScore W3162480795C5917680 @default.
- W3162480795 hasFunder F4320319952 @default.
- W3162480795 hasFunder F4320334593 @default.
- W3162480795 hasIssue "11" @default.
- W3162480795 hasLocation W31624807951 @default.
- W3162480795 hasLocation W31624807952 @default.
- W3162480795 hasLocation W31624807953 @default.
- W3162480795 hasOpenAccess W3162480795 @default.
- W3162480795 hasPrimaryLocation W31624807951 @default.