Matches in SemOpenAlex for { <https://semopenalex.org/work/W3162501760> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W3162501760 abstract "In this era of big data, all scientific disciplines are evolving fast to cope up with the enormity of the available information. So is statistics, the queen of science. Big data are particularly relevant to spatio-temporal statistics, thanks to much-improved technology in satellite based remote sensing and Geographical Information Systems. However, none of the existing approaches seem to meet the simultaneous demand of reality emulation and cheap computation. In this article, with the Levy random fields as the starting point, e construct a new Bayesian nonparametric, nonstationary and nonseparable dynamic spatio- temporal model with the additional realistic property that the lagged spatio-temporal correlations converge to zero as the lag tends to infinity. Although our Bayesian model seems to be intricately structured and is variable-dimensional with respect to each time index, we are able to devise a fast and efficient parallel Markov Chain Monte Carlo (MCMC) algorithm for Bayesian inference. Our simulation experiment brings out quite encouraging performance from our Bayesian Levy-dynamic approach. We finally apply our Bayesian Levy-dynamic model and methods to a sea surface temperature dataset consisting of 139,300 data points in space and time. Although not big data in the true sense, this is a large and highly structured data by any standard. Even for this large and complex data, our parallel MCMC algorithm, implemented on 80 processors, generated 110,000 MCMC realizations from the Levy-dynamic posterior within a single day, and the resultant Bayesian posterior predictive analysis turned out to be encouraging. Thus, it is not unreasonable to expect that with significantly more computing resources, it is feasible to analyse terabytes of spatio-temporal data with our new model and methods." @default.
- W3162501760 created "2021-05-24" @default.
- W3162501760 creator A5021207606 @default.
- W3162501760 date "2021-05-18" @default.
- W3162501760 modified "2023-09-23" @default.
- W3162501760 title "Bayesian Levy-Dynamic Spatio-Temporal Process: Towards Big Data Analysis" @default.
- W3162501760 cites W146619314 @default.
- W3162501760 cites W1520585082 @default.
- W3162501760 cites W1534349507 @default.
- W3162501760 cites W1591798773 @default.
- W3162501760 cites W1600361124 @default.
- W3162501760 cites W1975427826 @default.
- W3162501760 cites W1994503068 @default.
- W3162501760 cites W2010543673 @default.
- W3162501760 cites W2048648896 @default.
- W3162501760 cites W2079321251 @default.
- W3162501760 cites W2087714905 @default.
- W3162501760 cites W2106706098 @default.
- W3162501760 cites W2111111567 @default.
- W3162501760 cites W2205100308 @default.
- W3162501760 cites W2558631410 @default.
- W3162501760 cites W2614621928 @default.
- W3162501760 cites W2785799516 @default.
- W3162501760 cites W2799211855 @default.
- W3162501760 cites W2891430899 @default.
- W3162501760 cites W2922084453 @default.
- W3162501760 cites W2962894825 @default.
- W3162501760 cites W2963696509 @default.
- W3162501760 cites W2964094671 @default.
- W3162501760 cites W3022264774 @default.
- W3162501760 cites W3099691892 @default.
- W3162501760 cites W2962695421 @default.
- W3162501760 hasPublicationYear "2021" @default.
- W3162501760 type Work @default.
- W3162501760 sameAs 3162501760 @default.
- W3162501760 citedByCount "1" @default.
- W3162501760 countsByYear W31625017602021 @default.
- W3162501760 crossrefType "posted-content" @default.
- W3162501760 hasAuthorship W3162501760A5021207606 @default.
- W3162501760 hasConcept C105795698 @default.
- W3162501760 hasConcept C107673813 @default.
- W3162501760 hasConcept C111350023 @default.
- W3162501760 hasConcept C11413529 @default.
- W3162501760 hasConcept C124101348 @default.
- W3162501760 hasConcept C134261354 @default.
- W3162501760 hasConcept C149569020 @default.
- W3162501760 hasConcept C154945302 @default.
- W3162501760 hasConcept C160234255 @default.
- W3162501760 hasConcept C2776214188 @default.
- W3162501760 hasConcept C33923547 @default.
- W3162501760 hasConcept C41008148 @default.
- W3162501760 hasConcept C57830394 @default.
- W3162501760 hasConcept C71983512 @default.
- W3162501760 hasConcept C75684735 @default.
- W3162501760 hasConceptScore W3162501760C105795698 @default.
- W3162501760 hasConceptScore W3162501760C107673813 @default.
- W3162501760 hasConceptScore W3162501760C111350023 @default.
- W3162501760 hasConceptScore W3162501760C11413529 @default.
- W3162501760 hasConceptScore W3162501760C124101348 @default.
- W3162501760 hasConceptScore W3162501760C134261354 @default.
- W3162501760 hasConceptScore W3162501760C149569020 @default.
- W3162501760 hasConceptScore W3162501760C154945302 @default.
- W3162501760 hasConceptScore W3162501760C160234255 @default.
- W3162501760 hasConceptScore W3162501760C2776214188 @default.
- W3162501760 hasConceptScore W3162501760C33923547 @default.
- W3162501760 hasConceptScore W3162501760C41008148 @default.
- W3162501760 hasConceptScore W3162501760C57830394 @default.
- W3162501760 hasConceptScore W3162501760C71983512 @default.
- W3162501760 hasConceptScore W3162501760C75684735 @default.
- W3162501760 hasLocation W31625017601 @default.
- W3162501760 hasOpenAccess W3162501760 @default.
- W3162501760 hasPrimaryLocation W31625017601 @default.
- W3162501760 hasRelatedWork W1562322033 @default.
- W3162501760 hasRelatedWork W1695074111 @default.
- W3162501760 hasRelatedWork W1713680391 @default.
- W3162501760 hasRelatedWork W2188391450 @default.
- W3162501760 hasRelatedWork W2337222421 @default.
- W3162501760 hasRelatedWork W2468696157 @default.
- W3162501760 hasRelatedWork W2709427288 @default.
- W3162501760 hasRelatedWork W2733851691 @default.
- W3162501760 hasRelatedWork W2757354914 @default.
- W3162501760 hasRelatedWork W2759974188 @default.
- W3162501760 hasRelatedWork W27682612 @default.
- W3162501760 hasRelatedWork W2790015441 @default.
- W3162501760 hasRelatedWork W2940124612 @default.
- W3162501760 hasRelatedWork W2940715532 @default.
- W3162501760 hasRelatedWork W2951336346 @default.
- W3162501760 hasRelatedWork W2951392481 @default.
- W3162501760 hasRelatedWork W2964578922 @default.
- W3162501760 hasRelatedWork W2993310070 @default.
- W3162501760 hasRelatedWork W3025474590 @default.
- W3162501760 hasRelatedWork W3183359936 @default.
- W3162501760 isParatext "false" @default.
- W3162501760 isRetracted "false" @default.
- W3162501760 magId "3162501760" @default.
- W3162501760 workType "article" @default.