Matches in SemOpenAlex for { <https://semopenalex.org/work/W3162610561> ?p ?o ?g. }
- W3162610561 endingPage "1933" @default.
- W3162610561 startingPage "1933" @default.
- W3162610561 abstract "Data about storm impacts are essential for the disaster risk reduction process, but unlike data about storm characteristics, they are not routinely collected. In this paper, we demonstrate the high potential of convolutional neural networks to automatically constitute storm impact database using timestacks images provided by coastal video monitoring stations. Several convolutional neural network architectures and methods to deal with class imbalance were tested on two sites (Biarritz and Zarautz) to find the best practices for this classification task. This study shows that convolutional neural networks are well adapted for the classification of timestacks images into storm impact regimes. Overall, the most complex and deepest architectures yield better results. Indeed, the best performances are obtained with the VGG16 architecture for both sites with F-scores of 0.866 for Biarritz and 0.858 for Zarautz. For the class imbalance problem, the method of oversampling shows best classification accuracy with F-scores on average 30% higher than the ones obtained with cost sensitive learning. The transferability of the learning method between sites is also investigated and shows conclusive results. This study highlights the high potential of convolutional neural networks to enhance the value of coastal video monitoring data that are routinely recorded on many coastal sites. Furthermore, it shows that this type of deep neural network can significantly contribute to the setting up of risk databases necessary for the determination of storm risk indicators and, more broadly, for the optimization of risk-mitigation measures." @default.
- W3162610561 created "2021-05-24" @default.
- W3162610561 creator A5001266351 @default.
- W3162610561 creator A5005142678 @default.
- W3162610561 creator A5006574015 @default.
- W3162610561 creator A5082927195 @default.
- W3162610561 creator A5082929470 @default.
- W3162610561 date "2021-05-15" @default.
- W3162610561 modified "2023-10-16" @default.
- W3162610561 title "Automatic Creation of Storm Impact Database Based on Video Monitoring and Convolutional Neural Networks" @default.
- W3162610561 cites W1683298234 @default.
- W3162610561 cites W1941659294 @default.
- W3162610561 cites W2026554191 @default.
- W3162610561 cites W2038683230 @default.
- W3162610561 cites W2047697905 @default.
- W3162610561 cites W2088563739 @default.
- W3162610561 cites W2104970949 @default.
- W3162610561 cites W2109605257 @default.
- W3162610561 cites W2112796928 @default.
- W3162610561 cites W2124660862 @default.
- W3162610561 cites W2133059825 @default.
- W3162610561 cites W2165698076 @default.
- W3162610561 cites W2172212599 @default.
- W3162610561 cites W2243304681 @default.
- W3162610561 cites W2276262359 @default.
- W3162610561 cites W2513174558 @default.
- W3162610561 cites W2520583019 @default.
- W3162610561 cites W2600821965 @default.
- W3162610561 cites W2607953240 @default.
- W3162610561 cites W2618530766 @default.
- W3162610561 cites W2724820011 @default.
- W3162610561 cites W2738548662 @default.
- W3162610561 cites W2760491377 @default.
- W3162610561 cites W2763271843 @default.
- W3162610561 cites W2766139651 @default.
- W3162610561 cites W2767106145 @default.
- W3162610561 cites W2885640471 @default.
- W3162610561 cites W2887507614 @default.
- W3162610561 cites W2899656555 @default.
- W3162610561 cites W2907477535 @default.
- W3162610561 cites W2913788362 @default.
- W3162610561 cites W2936503027 @default.
- W3162610561 cites W2940098076 @default.
- W3162610561 cites W2952425498 @default.
- W3162610561 cites W2952860353 @default.
- W3162610561 cites W2990274576 @default.
- W3162610561 cites W2998429027 @default.
- W3162610561 cites W3000629123 @default.
- W3162610561 cites W3011935329 @default.
- W3162610561 cites W337587815 @default.
- W3162610561 cites W2264491375 @default.
- W3162610561 doi "https://doi.org/10.3390/rs13101933" @default.
- W3162610561 hasPublicationYear "2021" @default.
- W3162610561 type Work @default.
- W3162610561 sameAs 3162610561 @default.
- W3162610561 citedByCount "2" @default.
- W3162610561 countsByYear W31626105612022 @default.
- W3162610561 crossrefType "journal-article" @default.
- W3162610561 hasAuthorship W3162610561A5001266351 @default.
- W3162610561 hasAuthorship W3162610561A5005142678 @default.
- W3162610561 hasAuthorship W3162610561A5006574015 @default.
- W3162610561 hasAuthorship W3162610561A5082927195 @default.
- W3162610561 hasAuthorship W3162610561A5082929470 @default.
- W3162610561 hasBestOaLocation W31626105611 @default.
- W3162610561 hasConcept C105306849 @default.
- W3162610561 hasConcept C119857082 @default.
- W3162610561 hasConcept C124101348 @default.
- W3162610561 hasConcept C140331021 @default.
- W3162610561 hasConcept C153294291 @default.
- W3162610561 hasConcept C154945302 @default.
- W3162610561 hasConcept C205649164 @default.
- W3162610561 hasConcept C41008148 @default.
- W3162610561 hasConcept C50644808 @default.
- W3162610561 hasConcept C61272859 @default.
- W3162610561 hasConcept C81363708 @default.
- W3162610561 hasConceptScore W3162610561C105306849 @default.
- W3162610561 hasConceptScore W3162610561C119857082 @default.
- W3162610561 hasConceptScore W3162610561C124101348 @default.
- W3162610561 hasConceptScore W3162610561C140331021 @default.
- W3162610561 hasConceptScore W3162610561C153294291 @default.
- W3162610561 hasConceptScore W3162610561C154945302 @default.
- W3162610561 hasConceptScore W3162610561C205649164 @default.
- W3162610561 hasConceptScore W3162610561C41008148 @default.
- W3162610561 hasConceptScore W3162610561C50644808 @default.
- W3162610561 hasConceptScore W3162610561C61272859 @default.
- W3162610561 hasConceptScore W3162610561C81363708 @default.
- W3162610561 hasIssue "10" @default.
- W3162610561 hasLocation W31626105611 @default.
- W3162610561 hasLocation W31626105612 @default.
- W3162610561 hasLocation W31626105613 @default.
- W3162610561 hasLocation W31626105614 @default.
- W3162610561 hasLocation W31626105615 @default.
- W3162610561 hasOpenAccess W3162610561 @default.
- W3162610561 hasPrimaryLocation W31626105611 @default.
- W3162610561 hasRelatedWork W2521062615 @default.
- W3162610561 hasRelatedWork W2941850176 @default.
- W3162610561 hasRelatedWork W2961085424 @default.
- W3162610561 hasRelatedWork W3016958897 @default.