Matches in SemOpenAlex for { <https://semopenalex.org/work/W3162618824> ?p ?o ?g. }
- W3162618824 endingPage "126478" @default.
- W3162618824 startingPage "126478" @default.
- W3162618824 abstract "Multi-site rainfall models are useful tools to provide synthetic realizations of spatially-correlated rainfall at multiple stations, which are of great importance for flood and drought risk assessment and climate change impact analysis. Therefore, a good preservation of various observed rainfall characteristics including rainfall time-series statistics and rainfall event characteristics at individual stations and the inter-site correlations of these rainfall characteristics is very crucial. To achieve this purpose, this study aims to develop a multi-site stochastic daily rainfall model by coupling a univariate Markov chain with a multi-site rainfall event model (MSDRM-MCREM), based on our previously-developed single-site SDRM-MCREM. The univariate Markov chain model in MSDRM-MCREM is used to generate spatially-correlated multi-site rainfall occurrence time series and extract simulated rainfall events for individual stations based on continuous wet days. The multi-site rainfall event model is then constructed using Vine copulas to simulate spatially-correlated rainfall event characteristics of those simulated rainfall events that occur simultaneously at multiple stations, including rainfall durations, rainfall depths and temporal patterns. Subsequently, this model was applied to the Changshangang River basin in Zhejiang Province, East China and its performance in reproducing rainfall characteristics and spatial correlations was evaluated for three cases, i.e. simulations for two, three and four stations. Results show that except for overestimation of light rainfall, MSDRM-MCREM can simultaneously well preserve rainfall time-series statistics (i.e. different rainfall percentiles, mean monthly rainfall, standard deviations and probabilities and mean values of wet days), extreme rainfall (i.e. exceedance probabilities of annual maximum 1-day, 3-day and 5-day rainfall) and rainfall event characteristics (i.e. cumulative probabilities of wet spell, dry spell and rainfall depth, temporal patterns and occurrence probabilities of rainfall types for different depth-based event classes) at individual stations. In addition, the spatial correlations of rainfall characteristics have also been well maintained, including rainfall occurrence time series and rainfall event characteristics in different groups, with the inter-site correlations of rainfall time series being slightly underestimated." @default.
- W3162618824 created "2021-05-24" @default.
- W3162618824 creator A5000108862 @default.
- W3162618824 creator A5018443362 @default.
- W3162618824 creator A5062521749 @default.
- W3162618824 creator A5068494180 @default.
- W3162618824 creator A5083479772 @default.
- W3162618824 date "2021-07-01" @default.
- W3162618824 modified "2023-10-16" @default.
- W3162618824 title "A new framework for a multi-site stochastic daily rainfall model: Coupling a univariate Markov chain model with a multi-site rainfall event model" @default.
- W3162618824 cites W1509000134 @default.
- W3162618824 cites W1546769383 @default.
- W3162618824 cites W1590831612 @default.
- W3162618824 cites W1607625392 @default.
- W3162618824 cites W1622789247 @default.
- W3162618824 cites W1899659877 @default.
- W3162618824 cites W1970156874 @default.
- W3162618824 cites W1973054112 @default.
- W3162618824 cites W1982544776 @default.
- W3162618824 cites W2013089794 @default.
- W3162618824 cites W2018850436 @default.
- W3162618824 cites W2020098188 @default.
- W3162618824 cites W2037710421 @default.
- W3162618824 cites W2038256592 @default.
- W3162618824 cites W2041863929 @default.
- W3162618824 cites W2042203356 @default.
- W3162618824 cites W2053058844 @default.
- W3162618824 cites W2063379998 @default.
- W3162618824 cites W2082627343 @default.
- W3162618824 cites W2085504804 @default.
- W3162618824 cites W2087528805 @default.
- W3162618824 cites W2091206738 @default.
- W3162618824 cites W2103660127 @default.
- W3162618824 cites W2135391238 @default.
- W3162618824 cites W2149939858 @default.
- W3162618824 cites W2167737647 @default.
- W3162618824 cites W2168175751 @default.
- W3162618824 cites W2177768643 @default.
- W3162618824 cites W2507039649 @default.
- W3162618824 cites W2593062767 @default.
- W3162618824 cites W2613938754 @default.
- W3162618824 cites W2735721473 @default.
- W3162618824 cites W2736123841 @default.
- W3162618824 cites W2790682456 @default.
- W3162618824 cites W2795084593 @default.
- W3162618824 cites W2810071219 @default.
- W3162618824 cites W2810848013 @default.
- W3162618824 cites W2945264545 @default.
- W3162618824 cites W2959298257 @default.
- W3162618824 cites W2968413683 @default.
- W3162618824 cites W2992903998 @default.
- W3162618824 cites W3008924392 @default.
- W3162618824 cites W3036360917 @default.
- W3162618824 cites W3045763751 @default.
- W3162618824 doi "https://doi.org/10.1016/j.jhydrol.2021.126478" @default.
- W3162618824 hasPublicationYear "2021" @default.
- W3162618824 type Work @default.
- W3162618824 sameAs 3162618824 @default.
- W3162618824 citedByCount "3" @default.
- W3162618824 countsByYear W31626188242022 @default.
- W3162618824 countsByYear W31626188242023 @default.
- W3162618824 crossrefType "journal-article" @default.
- W3162618824 hasAuthorship W3162618824A5000108862 @default.
- W3162618824 hasAuthorship W3162618824A5018443362 @default.
- W3162618824 hasAuthorship W3162618824A5062521749 @default.
- W3162618824 hasAuthorship W3162618824A5068494180 @default.
- W3162618824 hasAuthorship W3162618824A5083479772 @default.
- W3162618824 hasBestOaLocation W31626188242 @default.
- W3162618824 hasConcept C105795698 @default.
- W3162618824 hasConcept C107054158 @default.
- W3162618824 hasConcept C120961793 @default.
- W3162618824 hasConcept C122048520 @default.
- W3162618824 hasConcept C127313418 @default.
- W3162618824 hasConcept C153294291 @default.
- W3162618824 hasConcept C161584116 @default.
- W3162618824 hasConcept C166957645 @default.
- W3162618824 hasConcept C187320778 @default.
- W3162618824 hasConcept C199163554 @default.
- W3162618824 hasConcept C205649164 @default.
- W3162618824 hasConcept C33923547 @default.
- W3162618824 hasConcept C39432304 @default.
- W3162618824 hasConcept C49204034 @default.
- W3162618824 hasConcept C74256435 @default.
- W3162618824 hasConcept C76886044 @default.
- W3162618824 hasConcept C98763669 @default.
- W3162618824 hasConceptScore W3162618824C105795698 @default.
- W3162618824 hasConceptScore W3162618824C107054158 @default.
- W3162618824 hasConceptScore W3162618824C120961793 @default.
- W3162618824 hasConceptScore W3162618824C122048520 @default.
- W3162618824 hasConceptScore W3162618824C127313418 @default.
- W3162618824 hasConceptScore W3162618824C153294291 @default.
- W3162618824 hasConceptScore W3162618824C161584116 @default.
- W3162618824 hasConceptScore W3162618824C166957645 @default.
- W3162618824 hasConceptScore W3162618824C187320778 @default.
- W3162618824 hasConceptScore W3162618824C199163554 @default.
- W3162618824 hasConceptScore W3162618824C205649164 @default.
- W3162618824 hasConceptScore W3162618824C33923547 @default.
- W3162618824 hasConceptScore W3162618824C39432304 @default.