Matches in SemOpenAlex for { <https://semopenalex.org/work/W3162684013> ?p ?o ?g. }
- W3162684013 endingPage "154" @default.
- W3162684013 startingPage "109" @default.
- W3162684013 abstract "The ability to produce phase pure and compositionally controlled nanomaterials at temperatures lower than the ones required by solid state reaction methods is one of the most important features in a solution-chemistry synthetic method. The sol–gel based methods usually use many of organic compounds throughout the synthetic process, which can be detrimental to certain applications, as high quantities of residual carbon can be found along the final product. The Oxidant Peroxo Method, usually known by the acronym OPM, is a solution-chemistry method based on the production of peroxo complexes with hydrogen peroxide and different transition metal ions at alkaline pH. The production of these peroxo complexes leads to an amorphous material that upon calcination produces phase pure transition metal oxides with controlled composition. One special feature of the OPM method is the total absence of the organic compounds during the synthesis, which avoids the presence of undesired pyrolyzed organic molecules mixed with the metal oxide product. Additionally, the absence of organic compounds produces an oxidizing atmosphere during the synthesis, yielding very reactive powders, facilitating the production highly dense ceramic pellets for electronic applications. The production of powders with surface containing peroxo groups, also, has been beneficial for increasing the photocatalytic activity of titanium-based compounds and for use as a precursor in the solid-state reactions, which considerably decreases the processing temperature. Since its inception and first publication, back in 2001, the OPM method has been successfully applied by different research groups worldwide to produce binary oxides, i.e. TiO2, tertiary oxides, PbTiO3, BaZrO3, and doped tertiary oxides Pb1−xLaTiO3. The variety of different metal oxides produced confirms the versatility of OPM method on yielding not only different compositions, but also different crystalline structures, like anatase, perovskite, sillenite, and spinel. Furthermore, the OPM method has yield metal oxides for many different applications, such as dielectric, optical, and photocatalytic. For instance, undoped Bi12TiO20 and Nb-doped Bi12(Ti1−xNbx)O20 were used as efficient photocatalysts for degradation of rhodamine B under ultraviolet and visible lights, presenting better activity than TiO2. In this chapter, the chemistry underlying the OPM method and the oxides most commonly prepared by this technique will be described, focusing how the method contributed to the advance of the synthetic, structural, and application aspects related to each one of these compounds. The future goals and applications of the method will be critically discussed. The authors hope this chapter can provide enough information to motivate a continuous dissemination of the OPM method, in view of its confirmed successful features and potential." @default.
- W3162684013 created "2021-05-24" @default.
- W3162684013 creator A5002765233 @default.
- W3162684013 creator A5006296050 @default.
- W3162684013 creator A5058896437 @default.
- W3162684013 creator A5077261094 @default.
- W3162684013 date "2021-01-01" @default.
- W3162684013 modified "2023-10-18" @default.
- W3162684013 title "Fundamentals and Advances of the Oxidant Peroxo Method (OPM) for the Synthesis of Transition Metal Oxides" @default.
- W3162684013 cites W1009208869 @default.
- W3162684013 cites W1150029176 @default.
- W3162684013 cites W167032675 @default.
- W3162684013 cites W1840479564 @default.
- W3162684013 cites W1891651383 @default.
- W3162684013 cites W1963888881 @default.
- W3162684013 cites W1964215040 @default.
- W3162684013 cites W1965682565 @default.
- W3162684013 cites W1966803252 @default.
- W3162684013 cites W1967144742 @default.
- W3162684013 cites W1971176463 @default.
- W3162684013 cites W1972636479 @default.
- W3162684013 cites W1974275131 @default.
- W3162684013 cites W1976156302 @default.
- W3162684013 cites W1978059282 @default.
- W3162684013 cites W1979684574 @default.
- W3162684013 cites W1980796048 @default.
- W3162684013 cites W1983665455 @default.
- W3162684013 cites W1983823622 @default.
- W3162684013 cites W1990188365 @default.
- W3162684013 cites W1995506895 @default.
- W3162684013 cites W1996214740 @default.
- W3162684013 cites W1998260068 @default.
- W3162684013 cites W2000219293 @default.
- W3162684013 cites W2001615266 @default.
- W3162684013 cites W2005462622 @default.
- W3162684013 cites W2005760492 @default.
- W3162684013 cites W2016780071 @default.
- W3162684013 cites W2023914520 @default.
- W3162684013 cites W2028724780 @default.
- W3162684013 cites W2030172488 @default.
- W3162684013 cites W2032042804 @default.
- W3162684013 cites W2032623061 @default.
- W3162684013 cites W2032739577 @default.
- W3162684013 cites W2032904137 @default.
- W3162684013 cites W2035320711 @default.
- W3162684013 cites W2035838260 @default.
- W3162684013 cites W2036639991 @default.
- W3162684013 cites W2037657653 @default.
- W3162684013 cites W2041853515 @default.
- W3162684013 cites W2043761865 @default.
- W3162684013 cites W2044279136 @default.
- W3162684013 cites W2047417706 @default.
- W3162684013 cites W2048237037 @default.
- W3162684013 cites W2049539397 @default.
- W3162684013 cites W2051648445 @default.
- W3162684013 cites W2052975071 @default.
- W3162684013 cites W2053966194 @default.
- W3162684013 cites W2055963303 @default.
- W3162684013 cites W2058051180 @default.
- W3162684013 cites W2060013011 @default.
- W3162684013 cites W2060774055 @default.
- W3162684013 cites W2063155355 @default.
- W3162684013 cites W2066398372 @default.
- W3162684013 cites W2066662546 @default.
- W3162684013 cites W2072897860 @default.
- W3162684013 cites W2073043484 @default.
- W3162684013 cites W2073772648 @default.
- W3162684013 cites W2075714734 @default.
- W3162684013 cites W2076400760 @default.
- W3162684013 cites W2077937071 @default.
- W3162684013 cites W2078443652 @default.
- W3162684013 cites W2088397336 @default.
- W3162684013 cites W2088545961 @default.
- W3162684013 cites W2090815809 @default.
- W3162684013 cites W2100578844 @default.
- W3162684013 cites W2100627529 @default.
- W3162684013 cites W2107792767 @default.
- W3162684013 cites W2119153777 @default.
- W3162684013 cites W2119731600 @default.
- W3162684013 cites W2142859686 @default.
- W3162684013 cites W2144600269 @default.
- W3162684013 cites W2145203368 @default.
- W3162684013 cites W2147222231 @default.
- W3162684013 cites W2149275168 @default.
- W3162684013 cites W2154001996 @default.
- W3162684013 cites W2155175869 @default.
- W3162684013 cites W2156799532 @default.
- W3162684013 cites W2161499633 @default.
- W3162684013 cites W2169258692 @default.
- W3162684013 cites W2169892476 @default.
- W3162684013 cites W2170481064 @default.
- W3162684013 cites W2250610659 @default.
- W3162684013 cites W2259577476 @default.
- W3162684013 cites W2273356879 @default.
- W3162684013 cites W2273623894 @default.
- W3162684013 cites W2300248529 @default.
- W3162684013 cites W2304571533 @default.
- W3162684013 cites W2318790962 @default.