Matches in SemOpenAlex for { <https://semopenalex.org/work/W3162745832> ?p ?o ?g. }
- W3162745832 endingPage "353" @default.
- W3162745832 startingPage "333" @default.
- W3162745832 abstract "Randomized decision making refers to the process of making decisions randomly according to the outcome of an independent randomization device, such as a dice roll or a coin flip. The concept is unconventional, and somehow counterintuitive, in the domain of mathematical programming, in which deterministic decisions are usually sought even when the problem parameters are uncertain. However, it has recently been shown that using a randomized, rather than a deterministic, strategy in nonconvex distributionally robust optimization (DRO) problems can lead to improvements in their objective values. It is still unknown, though, what is the magnitude of improvement that can be attained through randomization or how to numerically find the optimal randomized strategy. In this paper, we study the value of randomization in mixed-integer DRO problems and show that it is bounded by the improvement achievable through its continuous relaxation. Furthermore, we identify conditions under which the bound is tight. We then develop algorithmic procedures, based on column generation, for solving both single- and two-stage linear DRO problems with randomization that can be used with both moment-based and Wasserstein ambiguity sets. Finally, we apply the proposed algorithm to solve three classical discrete DRO problems: the assignment problem, the uncapacitated facility location problem, and the capacitated facility location problem and report numerical results that show the quality of our bounds, the computational efficiency of the proposed solution method, and the magnitude of performance improvement achieved by randomized decisions. Summary of Contribution: In this paper, we present both theoretical results and algorithmic tools to identify optimal randomized strategies for discrete distributionally robust optimization (DRO) problems and evaluate the performance improvements that can be achieved when using them rather than classical deterministic strategies. On the theory side, we provide improvement bounds based on continuous relaxation and identify the conditions under which these bound are tight. On the algorithmic side, we propose a finitely convergent, two-layer, column-generation algorithm that iterates between identifying feasible solutions and finding extreme realizations of the uncertain parameter. The proposed algorithm was implemented to solve distributionally robust stochastic versions of three classical optimization problems and extensive numerical results are reported. The paper extends a previous, purely theoretical work of the first author on the idea of randomized strategies in nonconvex DRO problems by providing useful bounds and algorithms to solve this kind of problems." @default.
- W3162745832 created "2021-05-24" @default.
- W3162745832 creator A5014509810 @default.
- W3162745832 creator A5025502211 @default.
- W3162745832 date "2022-01-01" @default.
- W3162745832 modified "2023-09-27" @default.
- W3162745832 title "The Value of Randomized Solutions in Mixed-Integer Distributionally Robust Optimization Problems" @default.
- W3162745832 cites W1518992076 @default.
- W3162745832 cites W1968355947 @default.
- W3162745832 cites W2008385173 @default.
- W3162745832 cites W2027047704 @default.
- W3162745832 cites W2031279008 @default.
- W3162745832 cites W2046396733 @default.
- W3162745832 cites W2056760235 @default.
- W3162745832 cites W2064676772 @default.
- W3162745832 cites W2075567596 @default.
- W3162745832 cites W2089953380 @default.
- W3162745832 cites W2092506216 @default.
- W3162745832 cites W2125417745 @default.
- W3162745832 cites W2141492178 @default.
- W3162745832 cites W2144946856 @default.
- W3162745832 cites W2153675120 @default.
- W3162745832 cites W2159309155 @default.
- W3162745832 cites W2400360587 @default.
- W3162745832 cites W2526036069 @default.
- W3162745832 cites W2529309826 @default.
- W3162745832 cites W2575374618 @default.
- W3162745832 cites W2581793543 @default.
- W3162745832 cites W2623014745 @default.
- W3162745832 cites W2737402237 @default.
- W3162745832 cites W2792079736 @default.
- W3162745832 cites W2793108066 @default.
- W3162745832 cites W2796321381 @default.
- W3162745832 cites W2963134136 @default.
- W3162745832 cites W2963450292 @default.
- W3162745832 cites W4250589301 @default.
- W3162745832 cites W596659122 @default.
- W3162745832 doi "https://doi.org/10.1287/ijoc.2020.1042" @default.
- W3162745832 hasPublicationYear "2022" @default.
- W3162745832 type Work @default.
- W3162745832 sameAs 3162745832 @default.
- W3162745832 citedByCount "6" @default.
- W3162745832 countsByYear W31627458322020 @default.
- W3162745832 countsByYear W31627458322022 @default.
- W3162745832 countsByYear W31627458322023 @default.
- W3162745832 crossrefType "journal-article" @default.
- W3162745832 hasAuthorship W3162745832A5014509810 @default.
- W3162745832 hasAuthorship W3162745832A5025502211 @default.
- W3162745832 hasConcept C11413529 @default.
- W3162745832 hasConcept C121332964 @default.
- W3162745832 hasConcept C126255220 @default.
- W3162745832 hasConcept C128669082 @default.
- W3162745832 hasConcept C134306372 @default.
- W3162745832 hasConcept C137836250 @default.
- W3162745832 hasConcept C15744967 @default.
- W3162745832 hasConcept C179254644 @default.
- W3162745832 hasConcept C193254401 @default.
- W3162745832 hasConcept C199360897 @default.
- W3162745832 hasConcept C25360446 @default.
- W3162745832 hasConcept C2776029896 @default.
- W3162745832 hasConcept C33923547 @default.
- W3162745832 hasConcept C34388435 @default.
- W3162745832 hasConcept C41008148 @default.
- W3162745832 hasConcept C41045048 @default.
- W3162745832 hasConcept C56086750 @default.
- W3162745832 hasConcept C74650414 @default.
- W3162745832 hasConcept C77805123 @default.
- W3162745832 hasConcept C97137487 @default.
- W3162745832 hasConceptScore W3162745832C11413529 @default.
- W3162745832 hasConceptScore W3162745832C121332964 @default.
- W3162745832 hasConceptScore W3162745832C126255220 @default.
- W3162745832 hasConceptScore W3162745832C128669082 @default.
- W3162745832 hasConceptScore W3162745832C134306372 @default.
- W3162745832 hasConceptScore W3162745832C137836250 @default.
- W3162745832 hasConceptScore W3162745832C15744967 @default.
- W3162745832 hasConceptScore W3162745832C179254644 @default.
- W3162745832 hasConceptScore W3162745832C193254401 @default.
- W3162745832 hasConceptScore W3162745832C199360897 @default.
- W3162745832 hasConceptScore W3162745832C25360446 @default.
- W3162745832 hasConceptScore W3162745832C2776029896 @default.
- W3162745832 hasConceptScore W3162745832C33923547 @default.
- W3162745832 hasConceptScore W3162745832C34388435 @default.
- W3162745832 hasConceptScore W3162745832C41008148 @default.
- W3162745832 hasConceptScore W3162745832C41045048 @default.
- W3162745832 hasConceptScore W3162745832C56086750 @default.
- W3162745832 hasConceptScore W3162745832C74650414 @default.
- W3162745832 hasConceptScore W3162745832C77805123 @default.
- W3162745832 hasConceptScore W3162745832C97137487 @default.
- W3162745832 hasIssue "1" @default.
- W3162745832 hasLocation W31627458321 @default.
- W3162745832 hasOpenAccess W3162745832 @default.
- W3162745832 hasPrimaryLocation W31627458321 @default.
- W3162745832 hasRelatedWork W134055995 @default.
- W3162745832 hasRelatedWork W1504088526 @default.
- W3162745832 hasRelatedWork W1536984458 @default.
- W3162745832 hasRelatedWork W2020662107 @default.
- W3162745832 hasRelatedWork W2083791563 @default.
- W3162745832 hasRelatedWork W2084057713 @default.