Matches in SemOpenAlex for { <https://semopenalex.org/work/W3162761567> ?p ?o ?g. }
- W3162761567 endingPage "6841" @default.
- W3162761567 startingPage "6827" @default.
- W3162761567 abstract "Hyperspectral image (HSI) fusion can effectively improve the spatial resolution of HSIs by integrating high-resolution multispectral images (MSIs). Considering the spatial and spectral degradation relationship between a fused image and input images, a physics-based GAN is proposed to fuse HSI and MSI. A physical model estimating degradation of image is introduced in the generator and in the discriminators. For the generator, a set of recursive modules including a physical degradation model and a multiscale residual channel attention fusion module integrate the spectral-spatial difference information between input images and estimated degradation images to restore the details of the fused image. Subsequently, the residual spatial attention fusion module is used to combine the results of all recursions to obtain the final reconstructed result. As for the discriminators, three networks with the final fused image, estimated LR HSI and estimated MSI as inputs share the same architecture. Finally, the loss function that contains adversarial losses and L1 losses of the fused image and estimated degradation images is used to optimize network parameters. The experimental results demonstrate that the proposed method outperforms state-of-the-art methods." @default.
- W3162761567 created "2021-05-24" @default.
- W3162761567 creator A5029551679 @default.
- W3162761567 creator A5047576305 @default.
- W3162761567 creator A5066135984 @default.
- W3162761567 creator A5085035578 @default.
- W3162761567 creator A5089746325 @default.
- W3162761567 date "2021-01-01" @default.
- W3162761567 modified "2023-10-16" @default.
- W3162761567 title "Physics-Based GAN With Iterative Refinement Unit for Hyperspectral and Multispectral Image Fusion" @default.
- W3162761567 cites W1517109601 @default.
- W3162761567 cites W1544124302 @default.
- W3162761567 cites W1653130573 @default.
- W3162761567 cites W1916874600 @default.
- W3162761567 cites W1965085171 @default.
- W3162761567 cites W1965261404 @default.
- W3162761567 cites W1990231296 @default.
- W3162761567 cites W2021046129 @default.
- W3162761567 cites W2087263574 @default.
- W3162761567 cites W2088538848 @default.
- W3162761567 cites W2097259623 @default.
- W3162761567 cites W2115214993 @default.
- W3162761567 cites W2117853853 @default.
- W3162761567 cites W2132984323 @default.
- W3162761567 cites W2144436897 @default.
- W3162761567 cites W2144948131 @default.
- W3162761567 cites W2155343202 @default.
- W3162761567 cites W2160662337 @default.
- W3162761567 cites W2194775991 @default.
- W3162761567 cites W2200474412 @default.
- W3162761567 cites W2214802144 @default.
- W3162761567 cites W2462592242 @default.
- W3162761567 cites W2592312604 @default.
- W3162761567 cites W2604977491 @default.
- W3162761567 cites W2743255627 @default.
- W3162761567 cites W2743618639 @default.
- W3162761567 cites W2748530166 @default.
- W3162761567 cites W2752782242 @default.
- W3162761567 cites W2792111852 @default.
- W3162761567 cites W2792365373 @default.
- W3162761567 cites W2804744787 @default.
- W3162761567 cites W2806155925 @default.
- W3162761567 cites W2901902111 @default.
- W3162761567 cites W2908833896 @default.
- W3162761567 cites W2911013316 @default.
- W3162761567 cites W2944395072 @default.
- W3162761567 cites W2944653015 @default.
- W3162761567 cites W2962793481 @default.
- W3162761567 cites W2963183385 @default.
- W3162761567 cites W2982671374 @default.
- W3162761567 cites W2986829670 @default.
- W3162761567 cites W2994099054 @default.
- W3162761567 cites W3000554425 @default.
- W3162761567 cites W3006462480 @default.
- W3162761567 cites W3008202438 @default.
- W3162761567 cites W3053564872 @default.
- W3162761567 cites W3099843321 @default.
- W3162761567 cites W3103919952 @default.
- W3162761567 cites W3104960002 @default.
- W3162761567 doi "https://doi.org/10.1109/jstars.2021.3075727" @default.
- W3162761567 hasPublicationYear "2021" @default.
- W3162761567 type Work @default.
- W3162761567 sameAs 3162761567 @default.
- W3162761567 citedByCount "11" @default.
- W3162761567 countsByYear W31627615672022 @default.
- W3162761567 countsByYear W31627615672023 @default.
- W3162761567 crossrefType "journal-article" @default.
- W3162761567 hasAuthorship W3162761567A5029551679 @default.
- W3162761567 hasAuthorship W3162761567A5047576305 @default.
- W3162761567 hasAuthorship W3162761567A5066135984 @default.
- W3162761567 hasAuthorship W3162761567A5085035578 @default.
- W3162761567 hasAuthorship W3162761567A5089746325 @default.
- W3162761567 hasBestOaLocation W31627615671 @default.
- W3162761567 hasConcept C11413529 @default.
- W3162761567 hasConcept C115961682 @default.
- W3162761567 hasConcept C121332964 @default.
- W3162761567 hasConcept C138885662 @default.
- W3162761567 hasConcept C141353440 @default.
- W3162761567 hasConcept C141379421 @default.
- W3162761567 hasConcept C153180895 @default.
- W3162761567 hasConcept C154945302 @default.
- W3162761567 hasConcept C155512373 @default.
- W3162761567 hasConcept C158525013 @default.
- W3162761567 hasConcept C159078339 @default.
- W3162761567 hasConcept C163258240 @default.
- W3162761567 hasConcept C173163844 @default.
- W3162761567 hasConcept C205372480 @default.
- W3162761567 hasConcept C2779679103 @default.
- W3162761567 hasConcept C2780992000 @default.
- W3162761567 hasConcept C31972630 @default.
- W3162761567 hasConcept C41008148 @default.
- W3162761567 hasConcept C41895202 @default.
- W3162761567 hasConcept C62520636 @default.
- W3162761567 hasConcept C69744172 @default.
- W3162761567 hasConcept C76155785 @default.
- W3162761567 hasConceptScore W3162761567C11413529 @default.
- W3162761567 hasConceptScore W3162761567C115961682 @default.
- W3162761567 hasConceptScore W3162761567C121332964 @default.