Matches in SemOpenAlex for { <https://semopenalex.org/work/W3162772538> ?p ?o ?g. }
- W3162772538 endingPage "1836" @default.
- W3162772538 startingPage "1836" @default.
- W3162772538 abstract "Accurate determination of phenological information of crops is essential for field management and decision-making. Remote sensing time-series data are widely used for extracting phenological phases. Existing methods mainly extract phenological phases directly from individual remote sensing time-series, which are easily affected by clouds, noise, and mixed pixels. This paper proposes a novel method of phenological phase extraction based on the time-weighted dynamic time warping (TWDTW) algorithm using MODIS Normalized Difference Vegetation Index (NDVI) 5-day time-series data with a spatial resolution of 500 m. Firstly, based on the phenological differences between winter wheat and other land cover types, winter wheat distribution is extracted using the TWDTW classification method, and the results show that the overall classification accuracy and Kappa coefficient reach 94.74% and 0.90, respectively. Then, we extract the pure winter-wheat pixels using a method based on the coefficient of variation, and use these pixels to generate the average phenological curve. Next, the difference between each winter-wheat phenological curve and the average winter-wheat phenological curve is quantitatively calculated using the TWDTW algorithm. Finally, the key phenological phases of winter wheat in the study area, namely, the green-up date (GUD), heading date (HD), and maturity date (MD), are determined. The results show that the phenological phase extraction using the TWDTW algorithm has high accuracy. By verification using phenological station data from the Meteorological Data Sharing Service System of China, the root mean square errors (RMSEs) of the GUD, HD, and MD are found to be 9.76, 5.72, and 6.98 days, respectively. Additionally, the method proposed in this article is shown to have a better extraction performance compared with several other methods. Furthermore, it is shown that, in Hebei Province, the GUD, HD, and MD are mainly affected by latitude and accumulated temperature. As the latitude increases from south to north, the GUD, HD, and MD are delayed, and for each 1° increment in latitude, the GUD, HD, and MD are delayed by 4.84, 5.79, and 6.61 days, respectively. The higher the accumulated temperature, the earlier the phenological phases occur. However, latitude and accumulated temperature have little effect on the length of the phenological phases. Additionally, the lengths of time between GUD and HD, HD and MD, and GUD and MD are stable at 46, 41, and 87 days, respectively. Overall, the proposed TWDTW method can accurately determine the key phenological phases of winter wheat at a regional scale using remote sensing time-series data." @default.
- W3162772538 created "2021-05-24" @default.
- W3162772538 creator A5001760285 @default.
- W3162772538 creator A5005698391 @default.
- W3162772538 creator A5015868975 @default.
- W3162772538 creator A5018147628 @default.
- W3162772538 creator A5020713851 @default.
- W3162772538 creator A5038230803 @default.
- W3162772538 creator A5043432611 @default.
- W3162772538 creator A5054691132 @default.
- W3162772538 creator A5076942238 @default.
- W3162772538 date "2021-05-08" @default.
- W3162772538 modified "2023-09-27" @default.
- W3162772538 title "Determination of Key Phenological Phases of Winter Wheat Based on the Time-Weighted Dynamic Time Warping Algorithm and MODIS Time-Series Data" @default.
- W3162772538 cites W1491321328 @default.
- W3162772538 cites W1910947081 @default.
- W3162772538 cites W1996905547 @default.
- W3162772538 cites W2007621088 @default.
- W3162772538 cites W2014376670 @default.
- W3162772538 cites W2021662310 @default.
- W3162772538 cites W2035234551 @default.
- W3162772538 cites W2042386716 @default.
- W3162772538 cites W2042645898 @default.
- W3162772538 cites W2072093516 @default.
- W3162772538 cites W2083969383 @default.
- W3162772538 cites W2090485563 @default.
- W3162772538 cites W2099098700 @default.
- W3162772538 cites W2099261919 @default.
- W3162772538 cites W2120397678 @default.
- W3162772538 cites W2128160875 @default.
- W3162772538 cites W2131087881 @default.
- W3162772538 cites W2138751033 @default.
- W3162772538 cites W2139429070 @default.
- W3162772538 cites W2145236739 @default.
- W3162772538 cites W2159205348 @default.
- W3162772538 cites W2196391350 @default.
- W3162772538 cites W2230432153 @default.
- W3162772538 cites W2344186514 @default.
- W3162772538 cites W2527777740 @default.
- W3162772538 cites W2557609320 @default.
- W3162772538 cites W2593491678 @default.
- W3162772538 cites W2602484871 @default.
- W3162772538 cites W2621041193 @default.
- W3162772538 cites W2752515325 @default.
- W3162772538 cites W2767953525 @default.
- W3162772538 cites W2801097289 @default.
- W3162772538 cites W2803701500 @default.
- W3162772538 cites W2972678553 @default.
- W3162772538 cites W2980091708 @default.
- W3162772538 cites W2988073690 @default.
- W3162772538 cites W2990259822 @default.
- W3162772538 cites W3015898103 @default.
- W3162772538 cites W3022008304 @default.
- W3162772538 doi "https://doi.org/10.3390/rs13091836" @default.
- W3162772538 hasPublicationYear "2021" @default.
- W3162772538 type Work @default.
- W3162772538 sameAs 3162772538 @default.
- W3162772538 citedByCount "7" @default.
- W3162772538 countsByYear W31627725382021 @default.
- W3162772538 countsByYear W31627725382022 @default.
- W3162772538 countsByYear W31627725382023 @default.
- W3162772538 crossrefType "journal-article" @default.
- W3162772538 hasAuthorship W3162772538A5001760285 @default.
- W3162772538 hasAuthorship W3162772538A5005698391 @default.
- W3162772538 hasAuthorship W3162772538A5015868975 @default.
- W3162772538 hasAuthorship W3162772538A5018147628 @default.
- W3162772538 hasAuthorship W3162772538A5020713851 @default.
- W3162772538 hasAuthorship W3162772538A5038230803 @default.
- W3162772538 hasAuthorship W3162772538A5043432611 @default.
- W3162772538 hasAuthorship W3162772538A5054691132 @default.
- W3162772538 hasAuthorship W3162772538A5076942238 @default.
- W3162772538 hasBestOaLocation W31627725381 @default.
- W3162772538 hasConcept C111368507 @default.
- W3162772538 hasConcept C11413529 @default.
- W3162772538 hasConcept C119857082 @default.
- W3162772538 hasConcept C127313418 @default.
- W3162772538 hasConcept C132651083 @default.
- W3162772538 hasConcept C151406439 @default.
- W3162772538 hasConcept C153294291 @default.
- W3162772538 hasConcept C1549246 @default.
- W3162772538 hasConcept C154945302 @default.
- W3162772538 hasConcept C160633673 @default.
- W3162772538 hasConcept C18903297 @default.
- W3162772538 hasConcept C205649164 @default.
- W3162772538 hasConcept C39432304 @default.
- W3162772538 hasConcept C41008148 @default.
- W3162772538 hasConcept C51417038 @default.
- W3162772538 hasConcept C62649853 @default.
- W3162772538 hasConcept C86803240 @default.
- W3162772538 hasConcept C88516994 @default.
- W3162772538 hasConceptScore W3162772538C111368507 @default.
- W3162772538 hasConceptScore W3162772538C11413529 @default.
- W3162772538 hasConceptScore W3162772538C119857082 @default.
- W3162772538 hasConceptScore W3162772538C127313418 @default.
- W3162772538 hasConceptScore W3162772538C132651083 @default.
- W3162772538 hasConceptScore W3162772538C151406439 @default.
- W3162772538 hasConceptScore W3162772538C153294291 @default.
- W3162772538 hasConceptScore W3162772538C1549246 @default.