Matches in SemOpenAlex for { <https://semopenalex.org/work/W3162790191> ?p ?o ?g. }
- W3162790191 endingPage "8815" @default.
- W3162790191 startingPage "8807" @default.
- W3162790191 abstract "Abstract Objectives To investigate the diagnostic performance of deep transfer learning (DTL) to detect liver cirrhosis from clinical MRI. Methods The dataset for this retrospective analysis consisted of 713 (343 female) patients who underwent liver MRI between 2017 and 2019. In total, 553 of these subjects had a confirmed diagnosis of liver cirrhosis, while the remainder had no history of liver disease. T2-weighted MRI slices at the level of the caudate lobe were manually exported for DTL analysis. Data were randomly split into training, validation, and test sets (70%/15%/15%). A ResNet50 convolutional neural network (CNN) pre-trained on the ImageNet archive was used for cirrhosis detection with and without upstream liver segmentation. Classification performance for detection of liver cirrhosis was compared to two radiologists with different levels of experience (4 th -year resident, board-certified radiologist). Segmentation was performed using a U-Net architecture built on a pre-trained ResNet34 encoder. Differences in classification accuracy were assessed by the χ 2 -test. Results Dice coefficients for automatic segmentation were above 0.98 for both validation and test data. The classification accuracy of liver cirrhosis on validation (vACC) and test (tACC) data for the DTL pipeline with upstream liver segmentation (vACC = 0.99, tACC = 0.96) was significantly higher compared to the resident (vACC = 0.88, p < 0.01; tACC = 0.91, p = 0.01) and to the board-certified radiologist (vACC = 0.96, p < 0.01; tACC = 0.90, p < 0.01). Conclusion This proof-of-principle study demonstrates the potential of DTL for detecting cirrhosis based on standard T2-weighted MRI. The presented method for image-based diagnosis of liver cirrhosis demonstrated expert-level classification accuracy. Key Points • A pipeline consisting of two convolutional neural networks (CNNs) pre-trained on an extensive natural image database (ImageNet archive) enables detection of liver cirrhosis on standard T2-weighted MRI. • High classification accuracy can be achieved even without altering the pre-trained parameters of the convolutional neural networks. • Other abdominal structures apart from the liver were relevant for detection when the network was trained on unsegmented images." @default.
- W3162790191 created "2021-05-24" @default.
- W3162790191 creator A5013965127 @default.
- W3162790191 creator A5040206867 @default.
- W3162790191 creator A5045017963 @default.
- W3162790191 creator A5048153659 @default.
- W3162790191 creator A5050767229 @default.
- W3162790191 creator A5053489600 @default.
- W3162790191 creator A5077390693 @default.
- W3162790191 creator A5084718211 @default.
- W3162790191 date "2021-05-11" @default.
- W3162790191 modified "2023-09-25" @default.
- W3162790191 title "Detection of liver cirrhosis in standard T2-weighted MRI using deep transfer learning" @default.
- W3162790191 cites W1966716734 @default.
- W3162790191 cites W1970706614 @default.
- W3162790191 cites W2017947777 @default.
- W3162790191 cites W2028602948 @default.
- W3162790191 cites W2079253085 @default.
- W3162790191 cites W2101807845 @default.
- W3162790191 cites W2147583694 @default.
- W3162790191 cites W2194775991 @default.
- W3162790191 cites W2253429366 @default.
- W3162790191 cites W2521537533 @default.
- W3162790191 cites W2605747211 @default.
- W3162790191 cites W2618530766 @default.
- W3162790191 cites W2773708607 @default.
- W3162790191 cites W2804905867 @default.
- W3162790191 cites W2804935296 @default.
- W3162790191 cites W2903189917 @default.
- W3162790191 cites W2922744444 @default.
- W3162790191 cites W2962858109 @default.
- W3162790191 cites W2963039693 @default.
- W3162790191 cites W2972256375 @default.
- W3162790191 cites W3002876351 @default.
- W3162790191 cites W3003523690 @default.
- W3162790191 cites W3006436762 @default.
- W3162790191 cites W3013902712 @default.
- W3162790191 cites W3014429891 @default.
- W3162790191 cites W3029137193 @default.
- W3162790191 cites W3033878890 @default.
- W3162790191 cites W3098509689 @default.
- W3162790191 cites W4256314700 @default.
- W3162790191 doi "https://doi.org/10.1007/s00330-021-07858-1" @default.
- W3162790191 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8523404" @default.
- W3162790191 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33974149" @default.
- W3162790191 hasPublicationYear "2021" @default.
- W3162790191 type Work @default.
- W3162790191 sameAs 3162790191 @default.
- W3162790191 citedByCount "16" @default.
- W3162790191 countsByYear W31627901912022 @default.
- W3162790191 countsByYear W31627901912023 @default.
- W3162790191 crossrefType "journal-article" @default.
- W3162790191 hasAuthorship W3162790191A5013965127 @default.
- W3162790191 hasAuthorship W3162790191A5040206867 @default.
- W3162790191 hasAuthorship W3162790191A5045017963 @default.
- W3162790191 hasAuthorship W3162790191A5048153659 @default.
- W3162790191 hasAuthorship W3162790191A5050767229 @default.
- W3162790191 hasAuthorship W3162790191A5053489600 @default.
- W3162790191 hasAuthorship W3162790191A5077390693 @default.
- W3162790191 hasAuthorship W3162790191A5084718211 @default.
- W3162790191 hasBestOaLocation W31627901911 @default.
- W3162790191 hasConcept C118552586 @default.
- W3162790191 hasConcept C126322002 @default.
- W3162790191 hasConcept C126838900 @default.
- W3162790191 hasConcept C154945302 @default.
- W3162790191 hasConcept C16568411 @default.
- W3162790191 hasConcept C2777214474 @default.
- W3162790191 hasConcept C2779889316 @default.
- W3162790191 hasConcept C41008148 @default.
- W3162790191 hasConcept C71924100 @default.
- W3162790191 hasConcept C89600930 @default.
- W3162790191 hasConceptScore W3162790191C118552586 @default.
- W3162790191 hasConceptScore W3162790191C126322002 @default.
- W3162790191 hasConceptScore W3162790191C126838900 @default.
- W3162790191 hasConceptScore W3162790191C154945302 @default.
- W3162790191 hasConceptScore W3162790191C16568411 @default.
- W3162790191 hasConceptScore W3162790191C2777214474 @default.
- W3162790191 hasConceptScore W3162790191C2779889316 @default.
- W3162790191 hasConceptScore W3162790191C41008148 @default.
- W3162790191 hasConceptScore W3162790191C71924100 @default.
- W3162790191 hasConceptScore W3162790191C89600930 @default.
- W3162790191 hasIssue "11" @default.
- W3162790191 hasLocation W31627901911 @default.
- W3162790191 hasLocation W31627901912 @default.
- W3162790191 hasLocation W31627901913 @default.
- W3162790191 hasOpenAccess W3162790191 @default.
- W3162790191 hasPrimaryLocation W31627901911 @default.
- W3162790191 hasRelatedWork W2364009260 @default.
- W3162790191 hasRelatedWork W2380057670 @default.
- W3162790191 hasRelatedWork W2381699712 @default.
- W3162790191 hasRelatedWork W2385697996 @default.
- W3162790191 hasRelatedWork W2386960718 @default.
- W3162790191 hasRelatedWork W2391160944 @default.
- W3162790191 hasRelatedWork W2391842199 @default.
- W3162790191 hasRelatedWork W2766588635 @default.
- W3162790191 hasRelatedWork W2896627865 @default.
- W3162790191 hasRelatedWork W2501299524 @default.
- W3162790191 hasVolume "31" @default.