Matches in SemOpenAlex for { <https://semopenalex.org/work/W3162808574> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W3162808574 endingPage "71-81" @default.
- W3162808574 startingPage "71-81" @default.
- W3162808574 abstract "The financial market has become an essential market in today’s economy. It is a market where different commodities are being exchange or sold at a certain price, though prices of commodities in the stock market are not stable. They are being influenced by some external factors like, politics, natural calamities, investor’s sentiment, exchange rate e.t.c.This system propose an agent using Reinforcement Learning Technique to predict google stock market data. The agent was trained using three Reinforcement Learning Algorithms. The algorithms used in this system are Deep Q-Learning Network, Double Q-Learning Network and Dueling Double Q-Learning Network. We first create an environment of which the agent can learn from. The environment consist of state, action and reward. The state is the representation of the environment; the action is the movement of the agent within the state or the choice/decision made by the agent at a given state. The action taken by the agent are stay, buy or sell. Our experimental results shows that Double Q-Learning Network outperforms the Deep Q-Learning Network and Dueling Double Q-Learning Network by receiving the highest reward in each state that the agent tries to take the best decision that is to say, buying the movement of the market is an upward trend, selling when the movement of the market is a downward trend and holding back when the movement of the market is unstable. The Dueling Q-Learning Network had the best reward of about 29.4 on 35 epoch, Double Q-Learning had reward of about 35.4 on 45 epoch, and the Deep Q-Learning Network had reward of about -81.8 on the first epoch." @default.
- W3162808574 created "2021-05-24" @default.
- W3162808574 creator A5061055913 @default.
- W3162808574 creator A5073350145 @default.
- W3162808574 creator A5077638938 @default.
- W3162808574 date "2021-01-01" @default.
- W3162808574 modified "2023-09-27" @default.
- W3162808574 title "Google Stock Market Price Prediction using Reinforcement Learning Technique" @default.
- W3162808574 cites W2044743451 @default.
- W3162808574 cites W2052848417 @default.
- W3162808574 cites W2515598829 @default.
- W3162808574 cites W2784246028 @default.
- W3162808574 cites W3035574064 @default.
- W3162808574 hasPublicationYear "2021" @default.
- W3162808574 type Work @default.
- W3162808574 sameAs 3162808574 @default.
- W3162808574 citedByCount "0" @default.
- W3162808574 crossrefType "journal-article" @default.
- W3162808574 hasAuthorship W3162808574A5061055913 @default.
- W3162808574 hasAuthorship W3162808574A5073350145 @default.
- W3162808574 hasAuthorship W3162808574A5077638938 @default.
- W3162808574 hasConcept C10138342 @default.
- W3162808574 hasConcept C119857082 @default.
- W3162808574 hasConcept C151730666 @default.
- W3162808574 hasConcept C154945302 @default.
- W3162808574 hasConcept C162324750 @default.
- W3162808574 hasConcept C200870193 @default.
- W3162808574 hasConcept C2780299701 @default.
- W3162808574 hasConcept C2780762169 @default.
- W3162808574 hasConcept C41008148 @default.
- W3162808574 hasConcept C86803240 @default.
- W3162808574 hasConcept C97541855 @default.
- W3162808574 hasConceptScore W3162808574C10138342 @default.
- W3162808574 hasConceptScore W3162808574C119857082 @default.
- W3162808574 hasConceptScore W3162808574C151730666 @default.
- W3162808574 hasConceptScore W3162808574C154945302 @default.
- W3162808574 hasConceptScore W3162808574C162324750 @default.
- W3162808574 hasConceptScore W3162808574C200870193 @default.
- W3162808574 hasConceptScore W3162808574C2780299701 @default.
- W3162808574 hasConceptScore W3162808574C2780762169 @default.
- W3162808574 hasConceptScore W3162808574C41008148 @default.
- W3162808574 hasConceptScore W3162808574C86803240 @default.
- W3162808574 hasConceptScore W3162808574C97541855 @default.
- W3162808574 hasIssue "1" @default.
- W3162808574 hasLocation W31628085741 @default.
- W3162808574 hasOpenAccess W3162808574 @default.
- W3162808574 hasPrimaryLocation W31628085741 @default.
- W3162808574 hasRelatedWork W108841959 @default.
- W3162808574 hasRelatedWork W1542665836 @default.
- W3162808574 hasRelatedWork W1544956240 @default.
- W3162808574 hasRelatedWork W1565089569 @default.
- W3162808574 hasRelatedWork W1606353929 @default.
- W3162808574 hasRelatedWork W1607107680 @default.
- W3162808574 hasRelatedWork W1873980194 @default.
- W3162808574 hasRelatedWork W2095710522 @default.
- W3162808574 hasRelatedWork W2118882387 @default.
- W3162808574 hasRelatedWork W2234507834 @default.
- W3162808574 hasRelatedWork W2267656180 @default.
- W3162808574 hasRelatedWork W2805899284 @default.
- W3162808574 hasRelatedWork W2922035746 @default.
- W3162808574 hasRelatedWork W2951301854 @default.
- W3162808574 hasRelatedWork W3121663631 @default.
- W3162808574 hasRelatedWork W3127148662 @default.
- W3162808574 hasRelatedWork W3129717163 @default.
- W3162808574 hasRelatedWork W602102014 @default.
- W3162808574 hasRelatedWork W1537263120 @default.
- W3162808574 hasRelatedWork W1600957501 @default.
- W3162808574 hasVolume "8" @default.
- W3162808574 isParatext "false" @default.
- W3162808574 isRetracted "false" @default.
- W3162808574 magId "3162808574" @default.
- W3162808574 workType "article" @default.