Matches in SemOpenAlex for { <https://semopenalex.org/work/W3163132013> ?p ?o ?g. }
- W3163132013 abstract "Few investigations have examined the structural controls of bark on its water storage and influence on stemflow, despite the bark being considered a critical component that determines the time and magnitude of this process. This study seeks to answer the question: Do bark water absorbability and wettability estimates correlate with stemflow yield? We hypothesized that (1) the absorbability and wettability are correlated, that is, greater water absorbability implies greater wettability, and (2) high rates of bark water absorbability and wettability has a strong and negative correlation with stemflow generation. Stemflow yield (Sy) was monitored over 12 months for 31 trees, representing 9 species common to the Brazilian savanna ecosystem known as Cerrado. Bark absorbability, per unit dry weight, changes over time of the water absorbability (BWA - by submersion methodology), bark drying (BWD), bark absorbability rate (BWA rate ), bark drying rate (BWD rate ), and wettability (initial contact angle – CA in and CA rate - CA rate ) were determined under laboratory conditions. As insoluble lignin may also act to alter bark water storage dynamics, for each species, the bark insoluble lignin content was characterized. Stemflow variability was significant across the study species. Funneling ratios (FR) indicates that all species’ canopies diverted enough rainfall as stemflow to concentrate rainwaters at the surface around their stem bases (FR > 1). Differences in bark water absorbability were notable some of tree species. A decrease in the CA value as a function of time was not observed for all barks, which in association with stemflow yields, allowed a novel classification method of wettability, based on CA in and it’s rate of change: highly wettable (CA in ≤ 75.3° and CA rate ≥ 0.26°h –1 ) and non-wettable (CA in ≥ 93.5° and CA rate ≤ 0.13°h –1 ). So, only from the wettability classification could be observed that the non-wettable bark species presented higher Sy, FR, BWA, and BWA rate than highly wettable bark species. The stemflow from species with highly wettable bark had a strong and positive correlation with BWA. On the other hand, non-wettable bark stemflow yield has a strongly and negative correlation with FR, CA in , and BWA rate . Thus, bark wettability properties showed to deserves special attention. This novel classification of bark wettability had a substantial effect on stemflow yield comprehension and proved to be an important variable to link laboratory and field investigation for understanding the stemflow yield. These findings will improve our understanding of the stemflow dynamics, water balance and the ecohydrology processes of forest ecosystems." @default.
- W3163132013 created "2021-05-24" @default.
- W3163132013 creator A5010611305 @default.
- W3163132013 creator A5022495842 @default.
- W3163132013 creator A5047206736 @default.
- W3163132013 creator A5074303324 @default.
- W3163132013 creator A5076852386 @default.
- W3163132013 creator A5083546571 @default.
- W3163132013 date "2021-05-12" @default.
- W3163132013 modified "2023-10-14" @default.
- W3163132013 title "How Is Bark Absorbability and Wettability Related to Stemflow Yield? Observations From Isolated Trees in the Brazilian Cerrado" @default.
- W3163132013 cites W1054212927 @default.
- W3163132013 cites W1765727125 @default.
- W3163132013 cites W1935817060 @default.
- W3163132013 cites W1958396013 @default.
- W3163132013 cites W1965453650 @default.
- W3163132013 cites W1970738369 @default.
- W3163132013 cites W1979676314 @default.
- W3163132013 cites W1986149655 @default.
- W3163132013 cites W1993191398 @default.
- W3163132013 cites W1996940508 @default.
- W3163132013 cites W2002332610 @default.
- W3163132013 cites W2009217681 @default.
- W3163132013 cites W2009571622 @default.
- W3163132013 cites W2021599642 @default.
- W3163132013 cites W2060706659 @default.
- W3163132013 cites W2071755110 @default.
- W3163132013 cites W2072552741 @default.
- W3163132013 cites W2074329032 @default.
- W3163132013 cites W2077087545 @default.
- W3163132013 cites W2082166827 @default.
- W3163132013 cites W2086380577 @default.
- W3163132013 cites W2098810856 @default.
- W3163132013 cites W2113331307 @default.
- W3163132013 cites W2119674034 @default.
- W3163132013 cites W2119788488 @default.
- W3163132013 cites W2126498034 @default.
- W3163132013 cites W2130779868 @default.
- W3163132013 cites W2148989614 @default.
- W3163132013 cites W2171185347 @default.
- W3163132013 cites W2180389332 @default.
- W3163132013 cites W2183168611 @default.
- W3163132013 cites W2324802362 @default.
- W3163132013 cites W2463719060 @default.
- W3163132013 cites W2483852239 @default.
- W3163132013 cites W2548874933 @default.
- W3163132013 cites W2570067146 @default.
- W3163132013 cites W2732216066 @default.
- W3163132013 cites W2790808327 @default.
- W3163132013 cites W2791943570 @default.
- W3163132013 cites W2803347888 @default.
- W3163132013 cites W2883484544 @default.
- W3163132013 cites W2897231977 @default.
- W3163132013 cites W2897384199 @default.
- W3163132013 cites W2906806347 @default.
- W3163132013 cites W2918572875 @default.
- W3163132013 cites W2922645159 @default.
- W3163132013 cites W2954138190 @default.
- W3163132013 cites W2986871905 @default.
- W3163132013 cites W2990137227 @default.
- W3163132013 cites W2998453556 @default.
- W3163132013 cites W3014546947 @default.
- W3163132013 cites W3022668659 @default.
- W3163132013 cites W3024256800 @default.
- W3163132013 cites W3028438745 @default.
- W3163132013 cites W3031477648 @default.
- W3163132013 cites W3096970067 @default.
- W3163132013 cites W3134313514 @default.
- W3163132013 cites W3140992988 @default.
- W3163132013 cites W3151562654 @default.
- W3163132013 cites W32731980 @default.
- W3163132013 cites W4248663808 @default.
- W3163132013 cites W573645376 @default.
- W3163132013 doi "https://doi.org/10.3389/ffgc.2021.650665" @default.
- W3163132013 hasPublicationYear "2021" @default.
- W3163132013 type Work @default.
- W3163132013 sameAs 3163132013 @default.
- W3163132013 citedByCount "11" @default.
- W3163132013 countsByYear W31631320132021 @default.
- W3163132013 countsByYear W31631320132022 @default.
- W3163132013 countsByYear W31631320132023 @default.
- W3163132013 crossrefType "journal-article" @default.
- W3163132013 hasAuthorship W3163132013A5010611305 @default.
- W3163132013 hasAuthorship W3163132013A5022495842 @default.
- W3163132013 hasAuthorship W3163132013A5047206736 @default.
- W3163132013 hasAuthorship W3163132013A5074303324 @default.
- W3163132013 hasAuthorship W3163132013A5076852386 @default.
- W3163132013 hasAuthorship W3163132013A5083546571 @default.
- W3163132013 hasBestOaLocation W31631320131 @default.
- W3163132013 hasConcept C101000010 @default.
- W3163132013 hasConcept C127413603 @default.
- W3163132013 hasConcept C133446333 @default.
- W3163132013 hasConcept C134306372 @default.
- W3163132013 hasConcept C134514944 @default.
- W3163132013 hasConcept C153667321 @default.
- W3163132013 hasConcept C159985019 @default.
- W3163132013 hasConcept C185592680 @default.
- W3163132013 hasConcept C18903297 @default.
- W3163132013 hasConcept C192562407 @default.
- W3163132013 hasConcept C202615002 @default.