Matches in SemOpenAlex for { <https://semopenalex.org/work/W3163159417> ?p ?o ?g. }
- W3163159417 abstract "Abstract Background Venous thromboembolism (VTE) is a common complication of hospitalized trauma patients and has an adverse impact on patient outcomes. However, there is still a lack of appropriate tools for effectively predicting VTE for trauma patients. We try to verify the accuracy of the Caprini score for predicting VTE in trauma patients, and further improve the prediction through machine learning algorithms. Methods We retrospectively reviewed emergency trauma patients who were admitted to a trauma center in a tertiary hospital from September 2019 to March 2020. The data in the patient’s electronic health record (EHR) and the Caprini score were extracted, combined with multiple feature screening methods and the random forest (RF) algorithm to constructs the VTE prediction model, and compares the prediction performance of (1) using only Caprini score; (2) using EHR data to build a machine learning model; (3) using EHR data and Caprini score to build a machine learning model. True Positive Rate (TPR), False Positive Rate (FPR), Area Under Curve (AUC), accuracy, and precision were reported. Results The Caprini score shows a good VTE prediction effect on the trauma hospitalized population when the cut-off point is 11 (TPR = 0.667, FPR = 0.227, AUC = 0.773), The best prediction model is LASSO+RF model combined with Caprini Score and other five features extracted from EHR data (TPR = 0.757, FPR = 0.290, AUC = 0.799). Conclusion The Caprini score has good VTE prediction performance in trauma patients, and the use of machine learning methods can further improve the prediction performance." @default.
- W3163159417 created "2021-05-24" @default.
- W3163159417 creator A5002297320 @default.
- W3163159417 creator A5014021467 @default.
- W3163159417 creator A5016252333 @default.
- W3163159417 creator A5040518479 @default.
- W3163159417 creator A5065661047 @default.
- W3163159417 creator A5081489339 @default.
- W3163159417 creator A5084705350 @default.
- W3163159417 date "2021-05-10" @default.
- W3163159417 modified "2023-09-29" @default.
- W3163159417 title "Predicting venous thromboembolism in hospitalized trauma patients: a combination of the Caprini score and data-driven machine learning model" @default.
- W3163159417 cites W1597337165 @default.
- W3163159417 cites W1986160846 @default.
- W3163159417 cites W1990877518 @default.
- W3163159417 cites W1999023440 @default.
- W3163159417 cites W2031388814 @default.
- W3163159417 cites W2035465844 @default.
- W3163159417 cites W2054324054 @default.
- W3163159417 cites W2059089864 @default.
- W3163159417 cites W2075916149 @default.
- W3163159417 cites W2087547305 @default.
- W3163159417 cites W2090086335 @default.
- W3163159417 cites W2122825543 @default.
- W3163159417 cites W2126567924 @default.
- W3163159417 cites W2135046866 @default.
- W3163159417 cites W2142092434 @default.
- W3163159417 cites W2415059022 @default.
- W3163159417 cites W2512894868 @default.
- W3163159417 cites W2551320863 @default.
- W3163159417 cites W2617545157 @default.
- W3163159417 cites W2782416748 @default.
- W3163159417 cites W2792936615 @default.
- W3163159417 cites W2900745935 @default.
- W3163159417 cites W2917887595 @default.
- W3163159417 cites W2933134699 @default.
- W3163159417 cites W2946408548 @default.
- W3163159417 cites W2949242184 @default.
- W3163159417 cites W2980328141 @default.
- W3163159417 cites W2995356251 @default.
- W3163159417 cites W2995579012 @default.
- W3163159417 cites W3009239567 @default.
- W3163159417 cites W3042007386 @default.
- W3163159417 cites W937409538 @default.
- W3163159417 doi "https://doi.org/10.1186/s12873-021-00447-x" @default.
- W3163159417 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8111727" @default.
- W3163159417 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33971809" @default.
- W3163159417 hasPublicationYear "2021" @default.
- W3163159417 type Work @default.
- W3163159417 sameAs 3163159417 @default.
- W3163159417 citedByCount "10" @default.
- W3163159417 countsByYear W31631594172021 @default.
- W3163159417 countsByYear W31631594172022 @default.
- W3163159417 countsByYear W31631594172023 @default.
- W3163159417 crossrefType "journal-article" @default.
- W3163159417 hasAuthorship W3163159417A5002297320 @default.
- W3163159417 hasAuthorship W3163159417A5014021467 @default.
- W3163159417 hasAuthorship W3163159417A5016252333 @default.
- W3163159417 hasAuthorship W3163159417A5040518479 @default.
- W3163159417 hasAuthorship W3163159417A5065661047 @default.
- W3163159417 hasAuthorship W3163159417A5081489339 @default.
- W3163159417 hasAuthorship W3163159417A5084705350 @default.
- W3163159417 hasBestOaLocation W31631594171 @default.
- W3163159417 hasConcept C118552586 @default.
- W3163159417 hasConcept C119857082 @default.
- W3163159417 hasConcept C126322002 @default.
- W3163159417 hasConcept C154945302 @default.
- W3163159417 hasConcept C167135981 @default.
- W3163159417 hasConcept C194828623 @default.
- W3163159417 hasConcept C2780110798 @default.
- W3163159417 hasConcept C2780724011 @default.
- W3163159417 hasConcept C2908647359 @default.
- W3163159417 hasConcept C41008148 @default.
- W3163159417 hasConcept C45804977 @default.
- W3163159417 hasConcept C71924100 @default.
- W3163159417 hasConcept C76318530 @default.
- W3163159417 hasConcept C99454951 @default.
- W3163159417 hasConceptScore W3163159417C118552586 @default.
- W3163159417 hasConceptScore W3163159417C119857082 @default.
- W3163159417 hasConceptScore W3163159417C126322002 @default.
- W3163159417 hasConceptScore W3163159417C154945302 @default.
- W3163159417 hasConceptScore W3163159417C167135981 @default.
- W3163159417 hasConceptScore W3163159417C194828623 @default.
- W3163159417 hasConceptScore W3163159417C2780110798 @default.
- W3163159417 hasConceptScore W3163159417C2780724011 @default.
- W3163159417 hasConceptScore W3163159417C2908647359 @default.
- W3163159417 hasConceptScore W3163159417C41008148 @default.
- W3163159417 hasConceptScore W3163159417C45804977 @default.
- W3163159417 hasConceptScore W3163159417C71924100 @default.
- W3163159417 hasConceptScore W3163159417C76318530 @default.
- W3163159417 hasConceptScore W3163159417C99454951 @default.
- W3163159417 hasIssue "1" @default.
- W3163159417 hasLocation W31631594171 @default.
- W3163159417 hasLocation W31631594172 @default.
- W3163159417 hasOpenAccess W3163159417 @default.
- W3163159417 hasPrimaryLocation W31631594171 @default.
- W3163159417 hasRelatedWork W1533727747 @default.
- W3163159417 hasRelatedWork W2028027599 @default.
- W3163159417 hasRelatedWork W2510700473 @default.
- W3163159417 hasRelatedWork W2986237400 @default.