Matches in SemOpenAlex for { <https://semopenalex.org/work/W3163231566> ?p ?o ?g. }
- W3163231566 endingPage "71460" @default.
- W3163231566 startingPage "71446" @default.
- W3163231566 abstract "This paper focuses on developing the acoustic-based detection of arc magnet internal defects under different noises and object types. The major challenge in such a detection case is that the traditional approaches mainly rely on expert knowledge and experiential features, which results in a poor generalization performance of the algorithm for new types of detection objects and is susceptible to noise interference. This work presents a novel detection framework based on an end-to-end one-dimensional (1D) convolutional long short-term memory (LSTM) model, where both the spatial and temporal features of the measured acoustic signals are extracted and then jointed for determining the internal defects of arc magnets. In addition, the LSTM layers are employed behind the 1D convolutional neural network, which makes the number of time steps in the LSTM layers for the temporal feature extraction is much smaller than the length of the input segments, thus the computational complexity of the LSTM layers can be highly reduced. Experimental results show that our method is superior to existed methods in the detection accuracy for the internal defects of arc magnets, and the diagnosis time per a single arc magnet is controlled at the millisecond, making it appropriate for real-time applications. Furthermore, the robustness of the proposed framework is validated through experiments on different signal-to-ratios and multiple object types of arc magnets." @default.
- W3163231566 created "2021-05-24" @default.
- W3163231566 creator A5003043204 @default.
- W3163231566 creator A5022966550 @default.
- W3163231566 creator A5027229079 @default.
- W3163231566 creator A5059819810 @default.
- W3163231566 creator A5075136358 @default.
- W3163231566 creator A5086369560 @default.
- W3163231566 date "2021-01-01" @default.
- W3163231566 modified "2023-10-18" @default.
- W3163231566 title "Combined Convolutional and LSTM Recurrent Neural Networks for Internal Defect Detection of Arc Magnets Under Strong Noises and Variable Object Types" @default.
- W3163231566 cites W1994596301 @default.
- W3163231566 cites W2025967380 @default.
- W3163231566 cites W2033554338 @default.
- W3163231566 cites W2060293515 @default.
- W3163231566 cites W2064675550 @default.
- W3163231566 cites W2100495367 @default.
- W3163231566 cites W2150355110 @default.
- W3163231566 cites W2317595875 @default.
- W3163231566 cites W2461729787 @default.
- W3163231566 cites W2514588627 @default.
- W3163231566 cites W2517331799 @default.
- W3163231566 cites W2558869916 @default.
- W3163231566 cites W2562607067 @default.
- W3163231566 cites W2584994008 @default.
- W3163231566 cites W2765893151 @default.
- W3163231566 cites W2769581371 @default.
- W3163231566 cites W2782766333 @default.
- W3163231566 cites W2791139105 @default.
- W3163231566 cites W2873535434 @default.
- W3163231566 cites W2886690463 @default.
- W3163231566 cites W2910426211 @default.
- W3163231566 cites W2920025840 @default.
- W3163231566 cites W2920492823 @default.
- W3163231566 cites W2924453407 @default.
- W3163231566 cites W2941680790 @default.
- W3163231566 cites W2943439651 @default.
- W3163231566 cites W2948490758 @default.
- W3163231566 cites W2963509340 @default.
- W3163231566 cites W2973059983 @default.
- W3163231566 cites W3009672064 @default.
- W3163231566 cites W3015173390 @default.
- W3163231566 cites W3025887373 @default.
- W3163231566 cites W3099562783 @default.
- W3163231566 doi "https://doi.org/10.1109/access.2021.3078709" @default.
- W3163231566 hasPublicationYear "2021" @default.
- W3163231566 type Work @default.
- W3163231566 sameAs 3163231566 @default.
- W3163231566 citedByCount "2" @default.
- W3163231566 countsByYear W31632315662022 @default.
- W3163231566 crossrefType "journal-article" @default.
- W3163231566 hasAuthorship W3163231566A5003043204 @default.
- W3163231566 hasAuthorship W3163231566A5022966550 @default.
- W3163231566 hasAuthorship W3163231566A5027229079 @default.
- W3163231566 hasAuthorship W3163231566A5059819810 @default.
- W3163231566 hasAuthorship W3163231566A5075136358 @default.
- W3163231566 hasAuthorship W3163231566A5086369560 @default.
- W3163231566 hasBestOaLocation W31632315661 @default.
- W3163231566 hasConcept C104317684 @default.
- W3163231566 hasConcept C115961682 @default.
- W3163231566 hasConcept C121332964 @default.
- W3163231566 hasConcept C1276947 @default.
- W3163231566 hasConcept C13280743 @default.
- W3163231566 hasConcept C153180895 @default.
- W3163231566 hasConcept C154945302 @default.
- W3163231566 hasConcept C16389437 @default.
- W3163231566 hasConcept C185592680 @default.
- W3163231566 hasConcept C185798385 @default.
- W3163231566 hasConcept C205649164 @default.
- W3163231566 hasConcept C2524010 @default.
- W3163231566 hasConcept C2776151529 @default.
- W3163231566 hasConcept C31972630 @default.
- W3163231566 hasConcept C33923547 @default.
- W3163231566 hasConcept C41008148 @default.
- W3163231566 hasConcept C52622490 @default.
- W3163231566 hasConcept C55493867 @default.
- W3163231566 hasConcept C60327585 @default.
- W3163231566 hasConcept C62520636 @default.
- W3163231566 hasConcept C63479239 @default.
- W3163231566 hasConcept C81363708 @default.
- W3163231566 hasConcept C83415579 @default.
- W3163231566 hasConcept C99498987 @default.
- W3163231566 hasConceptScore W3163231566C104317684 @default.
- W3163231566 hasConceptScore W3163231566C115961682 @default.
- W3163231566 hasConceptScore W3163231566C121332964 @default.
- W3163231566 hasConceptScore W3163231566C1276947 @default.
- W3163231566 hasConceptScore W3163231566C13280743 @default.
- W3163231566 hasConceptScore W3163231566C153180895 @default.
- W3163231566 hasConceptScore W3163231566C154945302 @default.
- W3163231566 hasConceptScore W3163231566C16389437 @default.
- W3163231566 hasConceptScore W3163231566C185592680 @default.
- W3163231566 hasConceptScore W3163231566C185798385 @default.
- W3163231566 hasConceptScore W3163231566C205649164 @default.
- W3163231566 hasConceptScore W3163231566C2524010 @default.
- W3163231566 hasConceptScore W3163231566C2776151529 @default.
- W3163231566 hasConceptScore W3163231566C31972630 @default.
- W3163231566 hasConceptScore W3163231566C33923547 @default.
- W3163231566 hasConceptScore W3163231566C41008148 @default.