Matches in SemOpenAlex for { <https://semopenalex.org/work/W3163262904> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W3163262904 endingPage "280" @default.
- W3163262904 startingPage "269" @default.
- W3163262904 abstract "This work addresses texture synthesis by relying on the local representation of images through their patch distributions. The main contribution is a framework that imposes the patch distributions at several scales using optimal transport. This leads to two formulations. First, a pixel-based optimization method is proposed, based on discrete optimal transport. We show that it generalizes a well-known texture optimization method that uses iterated patch nearest-neighbor projections, while avoiding some of its shortcomings. Second, in a semi-discrete setting, we exploit differential properties of Wasserstein distances to learn a fully convolutional network for texture generation. Once estimated, this network produces realistic and arbitrarily large texture samples in real time. By directly dealing with the patch distribution of synthesized images, we also overcome limitations of state-of-the-art techniques, such as patch aggregation issues that usually lead to low frequency artifacts (e.g. blurring) in traditional patch-based approaches, or statistical inconsistencies (e.g. color or patterns) in machine learning approaches." @default.
- W3163262904 created "2021-05-24" @default.
- W3163262904 creator A5030910160 @default.
- W3163262904 creator A5043622802 @default.
- W3163262904 creator A5054416120 @default.
- W3163262904 creator A5071693654 @default.
- W3163262904 date "2021-01-01" @default.
- W3163262904 modified "2023-10-16" @default.
- W3163262904 title "Wasserstein Generative Models for Patch-Based Texture Synthesis" @default.
- W3163262904 cites W1941325251 @default.
- W3163262904 cites W1967577110 @default.
- W3163262904 cites W2058005980 @default.
- W3163262904 cites W2116013899 @default.
- W3163262904 cites W2475287302 @default.
- W3163262904 cites W2615683174 @default.
- W3163262904 cites W2730550322 @default.
- W3163262904 cites W2794134712 @default.
- W3163262904 cites W2952449221 @default.
- W3163262904 cites W2962770929 @default.
- W3163262904 cites W2982041717 @default.
- W3163262904 cites W4255839052 @default.
- W3163262904 doi "https://doi.org/10.1007/978-3-030-75549-2_22" @default.
- W3163262904 hasPublicationYear "2021" @default.
- W3163262904 type Work @default.
- W3163262904 sameAs 3163262904 @default.
- W3163262904 citedByCount "8" @default.
- W3163262904 countsByYear W31632629042021 @default.
- W3163262904 countsByYear W31632629042022 @default.
- W3163262904 countsByYear W31632629042023 @default.
- W3163262904 crossrefType "book-chapter" @default.
- W3163262904 hasAuthorship W3163262904A5030910160 @default.
- W3163262904 hasAuthorship W3163262904A5043622802 @default.
- W3163262904 hasAuthorship W3163262904A5054416120 @default.
- W3163262904 hasAuthorship W3163262904A5071693654 @default.
- W3163262904 hasBestOaLocation W31632629042 @default.
- W3163262904 hasConcept C11413529 @default.
- W3163262904 hasConcept C115961682 @default.
- W3163262904 hasConcept C134306372 @default.
- W3163262904 hasConcept C140479938 @default.
- W3163262904 hasConcept C153180895 @default.
- W3163262904 hasConcept C154945302 @default.
- W3163262904 hasConcept C17744445 @default.
- W3163262904 hasConcept C199539241 @default.
- W3163262904 hasConcept C2776359362 @default.
- W3163262904 hasConcept C2781195486 @default.
- W3163262904 hasConcept C33923547 @default.
- W3163262904 hasConcept C41008148 @default.
- W3163262904 hasConcept C50494287 @default.
- W3163262904 hasConcept C63099799 @default.
- W3163262904 hasConcept C81363708 @default.
- W3163262904 hasConcept C9417928 @default.
- W3163262904 hasConcept C94625758 @default.
- W3163262904 hasConceptScore W3163262904C11413529 @default.
- W3163262904 hasConceptScore W3163262904C115961682 @default.
- W3163262904 hasConceptScore W3163262904C134306372 @default.
- W3163262904 hasConceptScore W3163262904C140479938 @default.
- W3163262904 hasConceptScore W3163262904C153180895 @default.
- W3163262904 hasConceptScore W3163262904C154945302 @default.
- W3163262904 hasConceptScore W3163262904C17744445 @default.
- W3163262904 hasConceptScore W3163262904C199539241 @default.
- W3163262904 hasConceptScore W3163262904C2776359362 @default.
- W3163262904 hasConceptScore W3163262904C2781195486 @default.
- W3163262904 hasConceptScore W3163262904C33923547 @default.
- W3163262904 hasConceptScore W3163262904C41008148 @default.
- W3163262904 hasConceptScore W3163262904C50494287 @default.
- W3163262904 hasConceptScore W3163262904C63099799 @default.
- W3163262904 hasConceptScore W3163262904C81363708 @default.
- W3163262904 hasConceptScore W3163262904C9417928 @default.
- W3163262904 hasConceptScore W3163262904C94625758 @default.
- W3163262904 hasLocation W31632629041 @default.
- W3163262904 hasLocation W31632629042 @default.
- W3163262904 hasLocation W31632629043 @default.
- W3163262904 hasLocation W31632629044 @default.
- W3163262904 hasLocation W31632629045 @default.
- W3163262904 hasLocation W31632629046 @default.
- W3163262904 hasOpenAccess W3163262904 @default.
- W3163262904 hasPrimaryLocation W31632629041 @default.
- W3163262904 hasRelatedWork W1967038064 @default.
- W3163262904 hasRelatedWork W1969438288 @default.
- W3163262904 hasRelatedWork W1975273303 @default.
- W3163262904 hasRelatedWork W2088533214 @default.
- W3163262904 hasRelatedWork W2099544729 @default.
- W3163262904 hasRelatedWork W2365641137 @default.
- W3163262904 hasRelatedWork W2366562706 @default.
- W3163262904 hasRelatedWork W4214866723 @default.
- W3163262904 hasRelatedWork W4301374033 @default.
- W3163262904 hasRelatedWork W4298422051 @default.
- W3163262904 isParatext "false" @default.
- W3163262904 isRetracted "false" @default.
- W3163262904 magId "3163262904" @default.
- W3163262904 workType "book-chapter" @default.