Matches in SemOpenAlex for { <https://semopenalex.org/work/W3163303764> ?p ?o ?g. }
- W3163303764 endingPage "422" @default.
- W3163303764 startingPage "383" @default.
- W3163303764 abstract "Purpose A composite sentiment index (CSI) from quantitative proxy sentiment indicators is likely to be a lag sentiment measure as it reflects only the information absorbed in the market. Information theories and behavioral finance research suggest that market prices may not adjust to all the available information at a point in time. This study hypothesizes that the sentiment from the unincorporated information may provide possible market leads. Thus, this paper aims to discuss a method to identify the un-incorporated qualitative Sentiment from information unadjusted in the market price to test whether sentiment polarity from the information can impact stock returns. Factoring market sentiment extracted from unincorporated information (residual sentiment or sentiment backlog) in CSI is an essential step for developing an integrated sentiment index to explain deviation in asset prices from their intrinsic value. Identifying the unincorporated Sentiment also helps in text analytics to distinguish between current and future market sentiment. Design/methodology/approach Initially, this study collects the news from various textual sources and runs the NVivo tool to compute the corpus data’s sentiment polarity. Subsequently, using the predictability horizon technique, this paper mines the unincorporated component of the news’s sentiment polarity. This study regresses three months’ sentiment polarity (the current period and its lags for two months) on the NIFTY50 index of the National Stock Exchange of India. If the three-month lags are significant, it indicates that news sentiment from the three months is unabsorbed and is likely to impact the future NIFTY50 index. The sentiment is also conditionally tested for firm size, volatility and specific industry sector-dependence. This paper discusses the implications of the results. Findings Based on information theories and empirical findings, the paper demonstrates that it is possible to identify unincorporated information and extract the sentiment polarity to predict future market direction. The sentiment polarity variables are significant for the current period and two-month lags. The magnitude of the sentiment polarity coefficient has decreased from the current period to lag one and lag two. This study finds that the unabsorbed component or backlog of news consisted of mainly negative market news or unconfirmed news of the previous period, as illustrated in Tables 1 and 2 and Figure 2. The findings on unadjusted news effects vary with firm size, volatility and sectoral indices as depicted in Figures 3, 4, 5 and 6. Originality/value The related literature on sentiment index describes top-down/ bottom-up models using quantitative proxy sentiment indicators and natural language processing (NLP)/machine learning approaches to compute the sentiment from qualitative information to explain variance in market returns. NLP approaches use current period sentiment to understand market trends ignoring the unadjusted sentiment carried from the previous period. The underlying assumption here is that the market adjusts to all available information instantly, which is proved false in various empirical studies backed by information theories. The paper discusses a novel approach to identify and extract sentiment from unincorporated information, which is a critical sentiment measure for developing a holistic sentiment index, both in text analytics and in top-down quantitative models. Practitioners may use the methodology in the algorithmic trading models and conduct stock market research." @default.
- W3163303764 created "2021-05-24" @default.
- W3163303764 creator A5010952755 @default.
- W3163303764 creator A5064693863 @default.
- W3163303764 date "2021-05-18" @default.
- W3163303764 modified "2023-10-14" @default.
- W3163303764 title "Accounting for unadjusted news sentiment for asset pricing" @default.
- W3163303764 cites W1863029622 @default.
- W3163303764 cites W1967516006 @default.
- W3163303764 cites W1972175456 @default.
- W3163303764 cites W1974701066 @default.
- W3163303764 cites W1976781093 @default.
- W3163303764 cites W1984199597 @default.
- W3163303764 cites W1987246815 @default.
- W3163303764 cites W1988843954 @default.
- W3163303764 cites W2001340398 @default.
- W3163303764 cites W2003615981 @default.
- W3163303764 cites W2020076795 @default.
- W3163303764 cites W2022994608 @default.
- W3163303764 cites W2031926627 @default.
- W3163303764 cites W2036040513 @default.
- W3163303764 cites W2038224101 @default.
- W3163303764 cites W2041782669 @default.
- W3163303764 cites W2047575769 @default.
- W3163303764 cites W2048910076 @default.
- W3163303764 cites W2049007343 @default.
- W3163303764 cites W2050643653 @default.
- W3163303764 cites W2054421265 @default.
- W3163303764 cites W2061978002 @default.
- W3163303764 cites W2062090301 @default.
- W3163303764 cites W2068518527 @default.
- W3163303764 cites W2072058311 @default.
- W3163303764 cites W2078838966 @default.
- W3163303764 cites W2080450677 @default.
- W3163303764 cites W2087146085 @default.
- W3163303764 cites W2090637028 @default.
- W3163303764 cites W2092164622 @default.
- W3163303764 cites W2094392844 @default.
- W3163303764 cites W2095219646 @default.
- W3163303764 cites W2096815396 @default.
- W3163303764 cites W2101756786 @default.
- W3163303764 cites W2102665218 @default.
- W3163303764 cites W2104795328 @default.
- W3163303764 cites W2106895738 @default.
- W3163303764 cites W2110752212 @default.
- W3163303764 cites W2113152628 @default.
- W3163303764 cites W2121267885 @default.
- W3163303764 cites W2125520394 @default.
- W3163303764 cites W2134519938 @default.
- W3163303764 cites W2144487825 @default.
- W3163303764 cites W2154765558 @default.
- W3163303764 cites W2154839664 @default.
- W3163303764 cites W2157403008 @default.
- W3163303764 cites W2161114639 @default.
- W3163303764 cites W2170815702 @default.
- W3163303764 cites W2190883392 @default.
- W3163303764 cites W2196996750 @default.
- W3163303764 cites W2198165258 @default.
- W3163303764 cites W2284275062 @default.
- W3163303764 cites W2317895244 @default.
- W3163303764 cites W2319031802 @default.
- W3163303764 cites W2328775795 @default.
- W3163303764 cites W2566234880 @default.
- W3163303764 cites W2579970897 @default.
- W3163303764 cites W2591997414 @default.
- W3163303764 cites W2626389465 @default.
- W3163303764 cites W2727756744 @default.
- W3163303764 cites W2738776643 @default.
- W3163303764 cites W2757139628 @default.
- W3163303764 cites W2762466482 @default.
- W3163303764 cites W2775636426 @default.
- W3163303764 cites W2801884241 @default.
- W3163303764 cites W2912723748 @default.
- W3163303764 cites W2922184047 @default.
- W3163303764 cites W2937185793 @default.
- W3163303764 cites W2956142806 @default.
- W3163303764 cites W2976807927 @default.
- W3163303764 cites W2979778574 @default.
- W3163303764 cites W2980443951 @default.
- W3163303764 cites W2980772200 @default.
- W3163303764 cites W2993361276 @default.
- W3163303764 cites W2999123046 @default.
- W3163303764 cites W3011865677 @default.
- W3163303764 cites W3020860095 @default.
- W3163303764 cites W3088107006 @default.
- W3163303764 cites W3088873300 @default.
- W3163303764 cites W3101592544 @default.
- W3163303764 cites W3102444842 @default.
- W3163303764 cites W3121136571 @default.
- W3163303764 cites W3121238485 @default.
- W3163303764 cites W3121266768 @default.
- W3163303764 cites W3121285187 @default.
- W3163303764 cites W3121467893 @default.
- W3163303764 cites W3121547932 @default.
- W3163303764 cites W3121685847 @default.
- W3163303764 cites W3121766225 @default.
- W3163303764 cites W3121804996 @default.
- W3163303764 cites W3121973777 @default.