Matches in SemOpenAlex for { <https://semopenalex.org/work/W3163366300> ?p ?o ?g. }
- W3163366300 endingPage "103689" @default.
- W3163366300 startingPage "103689" @default.
- W3163366300 abstract "• Experimental data shows that under flow regime transitions the typical trend of phase distribution can change. • An experimental dataset on impact T-junctions for the refrigerants R32, R1234ze, R134a and R125 was made. • An extensive comparison of phase distribution models shows that they are not applicable to other working fluids as for which they are conceived. • A novel phase distribution algorithm is presented taking into account thermophysical fluid properties. • The new algorithm allows to predict phase distribution with a MDA of the phase mass fraction below 0.05 in 90% of the cases for different working fluids. Two-phase flows of refrigerants commonly occur in a multitude of systems in the power and process industries, including heat pumps, organic flash cycle,... These flows often have to pass through T-junctions to divide the inlet stream into two outlet streams. Herein, phase maldistribution can occur, meaning that the vapour qualities in the outlet are not equal to the inlet vapour quality. Undesired splitting could lead to unwanted effects, such as to much superheat after evaporation if less liquid phase entered the corresponding exit branch than was expected. Or liquid impact in turbines when to much liquid was allowed to flow to the turbine. Therefore, gaining insight into phase maldisdribution for refrigerants is important to be able to predict the amount of each phase in each exit branch. In literature, data is mostly available for air-water flows and models are built and validated solely on these datasets. The present work extends the air-water data of phase distribution over a horizontal impacting T-junction with data on different refrigerants. For this purpose an experimental setup was developed which can test refrigerant flows with mass flux G up to 700 kg.m − 2 . s − 1 at a saturation temperature between 10 ∘ C and 20 ∘ C and with a vapour quality x between 0 and 1. In total 551 experiments were performed with four different refrigerants: R32, R134a, R125 and R1234ze. For inlet superficial liquid velocities equal or higher than 0.2m/s it was found that with increasing inlet superficial vapour velocities, the amount of liquid phase flowing to the branch with the lowest mass flow rate decreased. This trend is consistent with literature. A discontinuity in this trend was observed when a flow regime transition occured. For the refrigerant R32 and an inlet superficial liquid velocity equal or lower than 0.1 m/s, the liquid phase followed an opposite trend by preferring the branch with the highest mass flow rate. The models from literature do not predict the refrigerant data with the necessary accuracy. They only work for specific refrigerants and for inlet flow regimes similar to the flow regimes of the air-water data used to construct the model. For this reason, the provided work also presents a new phase distribution model created upon the data gathered." @default.
- W3163366300 created "2021-05-24" @default.
- W3163366300 creator A5009283800 @default.
- W3163366300 creator A5054824738 @default.
- W3163366300 creator A5056137831 @default.
- W3163366300 creator A5059793987 @default.
- W3163366300 creator A5077295895 @default.
- W3163366300 date "2021-09-01" @default.
- W3163366300 modified "2023-09-24" @default.
- W3163366300 title "Phase distribution of two-phase refrigerant flow over an impacting horizontal T-junction" @default.
- W3163366300 cites W1563210662 @default.
- W3163366300 cites W1979785318 @default.
- W3163366300 cites W1990694807 @default.
- W3163366300 cites W1991177543 @default.
- W3163366300 cites W1998368091 @default.
- W3163366300 cites W2003960794 @default.
- W3163366300 cites W2012014989 @default.
- W3163366300 cites W2012621625 @default.
- W3163366300 cites W2015174252 @default.
- W3163366300 cites W2020286607 @default.
- W3163366300 cites W2020309076 @default.
- W3163366300 cites W2022933021 @default.
- W3163366300 cites W2036666688 @default.
- W3163366300 cites W2039043895 @default.
- W3163366300 cites W2047959310 @default.
- W3163366300 cites W2048501410 @default.
- W3163366300 cites W2054141588 @default.
- W3163366300 cites W2061050394 @default.
- W3163366300 cites W2063487208 @default.
- W3163366300 cites W2080549863 @default.
- W3163366300 cites W2083512411 @default.
- W3163366300 cites W2086319325 @default.
- W3163366300 cites W2094144239 @default.
- W3163366300 cites W2193785711 @default.
- W3163366300 cites W2340896831 @default.
- W3163366300 cites W2758077666 @default.
- W3163366300 cites W2791424418 @default.
- W3163366300 cites W2799940606 @default.
- W3163366300 doi "https://doi.org/10.1016/j.ijmultiphaseflow.2021.103689" @default.
- W3163366300 hasPublicationYear "2021" @default.
- W3163366300 type Work @default.
- W3163366300 sameAs 3163366300 @default.
- W3163366300 citedByCount "4" @default.
- W3163366300 countsByYear W31633663002022 @default.
- W3163366300 countsByYear W31633663002023 @default.
- W3163366300 crossrefType "journal-article" @default.
- W3163366300 hasAuthorship W3163366300A5009283800 @default.
- W3163366300 hasAuthorship W3163366300A5054824738 @default.
- W3163366300 hasAuthorship W3163366300A5056137831 @default.
- W3163366300 hasAuthorship W3163366300A5059793987 @default.
- W3163366300 hasAuthorship W3163366300A5077295895 @default.
- W3163366300 hasConcept C121332964 @default.
- W3163366300 hasConcept C127413603 @default.
- W3163366300 hasConcept C131097465 @default.
- W3163366300 hasConcept C137076967 @default.
- W3163366300 hasConcept C144308804 @default.
- W3163366300 hasConcept C18762648 @default.
- W3163366300 hasConcept C192562407 @default.
- W3163366300 hasConcept C199499590 @default.
- W3163366300 hasConcept C201289731 @default.
- W3163366300 hasConcept C2779301550 @default.
- W3163366300 hasConcept C37114186 @default.
- W3163366300 hasConcept C38349280 @default.
- W3163366300 hasConcept C39432304 @default.
- W3163366300 hasConcept C44280652 @default.
- W3163366300 hasConcept C57879066 @default.
- W3163366300 hasConcept C61441594 @default.
- W3163366300 hasConcept C62520636 @default.
- W3163366300 hasConcept C78519656 @default.
- W3163366300 hasConcept C97355855 @default.
- W3163366300 hasConceptScore W3163366300C121332964 @default.
- W3163366300 hasConceptScore W3163366300C127413603 @default.
- W3163366300 hasConceptScore W3163366300C131097465 @default.
- W3163366300 hasConceptScore W3163366300C137076967 @default.
- W3163366300 hasConceptScore W3163366300C144308804 @default.
- W3163366300 hasConceptScore W3163366300C18762648 @default.
- W3163366300 hasConceptScore W3163366300C192562407 @default.
- W3163366300 hasConceptScore W3163366300C199499590 @default.
- W3163366300 hasConceptScore W3163366300C201289731 @default.
- W3163366300 hasConceptScore W3163366300C2779301550 @default.
- W3163366300 hasConceptScore W3163366300C37114186 @default.
- W3163366300 hasConceptScore W3163366300C38349280 @default.
- W3163366300 hasConceptScore W3163366300C39432304 @default.
- W3163366300 hasConceptScore W3163366300C44280652 @default.
- W3163366300 hasConceptScore W3163366300C57879066 @default.
- W3163366300 hasConceptScore W3163366300C61441594 @default.
- W3163366300 hasConceptScore W3163366300C62520636 @default.
- W3163366300 hasConceptScore W3163366300C78519656 @default.
- W3163366300 hasConceptScore W3163366300C97355855 @default.
- W3163366300 hasFunder F4320321730 @default.
- W3163366300 hasFunder F4320321732 @default.
- W3163366300 hasLocation W31633663001 @default.
- W3163366300 hasOpenAccess W3163366300 @default.
- W3163366300 hasPrimaryLocation W31633663001 @default.
- W3163366300 hasRelatedWork W1992223692 @default.
- W3163366300 hasRelatedWork W2048043494 @default.
- W3163366300 hasRelatedWork W2066498379 @default.
- W3163366300 hasRelatedWork W2361702349 @default.