Matches in SemOpenAlex for { <https://semopenalex.org/work/W3163425731> ?p ?o ?g. }
- W3163425731 endingPage "R670" @default.
- W3163425731 startingPage "R659" @default.
- W3163425731 abstract "Seismic forward prospecting is essential because it can identify the velocity distribution in front of the tunnel face and provide guidance for safe excavation activities. We have developed a convolutional neural network (CNN)-based method to invert forward-prospecting data recorded in tunnels for accurate and rapid estimation of seismic velocity distribution. Targeting the unusual seismic acquisition setup in tunnels, we design two separate encoders to extract features from observation data recorded on both tunnel sidewalls. Subsequently, these features are concatenated to a decoder for velocity prediction. Considering the various acquisition setups used in different tunneling projects, the deep-learning inversion network must be flexible in terms of the seismic source/receiver positions for practical application. We have generated two auxiliary feature maps that can be used to feed acquisition information to our network. Our network, acquisition adaptive CNN ([Formula: see text]-CNN), can be trained by defining the loss function based on the [Formula: see text]-norm and multiscale structural similarity. Compared with traditional CNNs, our method has superior performance on data sets with fixed and random acquisition setups and also demonstrates certain robustness when handling synthetic data with field noise. Finally, we test how the network performs when feeding the modified acquisition setup information. It turns out that the inversion result will demonstrate a shift when the provided acquisition setup information shift, which verified the validity of the network and its use of acquisition information." @default.
- W3163425731 created "2021-05-24" @default.
- W3163425731 creator A5006793709 @default.
- W3163425731 creator A5019595634 @default.
- W3163425731 creator A5048826252 @default.
- W3163425731 creator A5077933989 @default.
- W3163425731 creator A5091117089 @default.
- W3163425731 date "2021-07-27" @default.
- W3163425731 modified "2023-10-14" @default.
- W3163425731 title "Seismic data inversion with acquisition adaptive convolutional neural network for geologic forward prospecting in tunnels" @default.
- W3163425731 cites W1981677382 @default.
- W3163425731 cites W2009552164 @default.
- W3163425731 cites W2044804449 @default.
- W3163425731 cites W2076211048 @default.
- W3163425731 cites W2080695100 @default.
- W3163425731 cites W2084420727 @default.
- W3163425731 cites W256432441 @default.
- W3163425731 cites W2570051901 @default.
- W3163425731 cites W2737638432 @default.
- W3163425731 cites W2746791238 @default.
- W3163425731 cites W2763703317 @default.
- W3163425731 cites W2776585113 @default.
- W3163425731 cites W2810812775 @default.
- W3163425731 cites W2890172403 @default.
- W3163425731 cites W2890946821 @default.
- W3163425731 cites W2892108217 @default.
- W3163425731 cites W2897018307 @default.
- W3163425731 cites W2904005001 @default.
- W3163425731 cites W2904532443 @default.
- W3163425731 cites W2911424749 @default.
- W3163425731 cites W2912913790 @default.
- W3163425731 cites W2915004230 @default.
- W3163425731 cites W2918452065 @default.
- W3163425731 cites W2947853264 @default.
- W3163425731 cites W3033557345 @default.
- W3163425731 cites W3119045078 @default.
- W3163425731 cites W3125217164 @default.
- W3163425731 cites W4244300305 @default.
- W3163425731 doi "https://doi.org/10.1190/geo2020-0370.1" @default.
- W3163425731 hasPublicationYear "2021" @default.
- W3163425731 type Work @default.
- W3163425731 sameAs 3163425731 @default.
- W3163425731 citedByCount "5" @default.
- W3163425731 countsByYear W31634257312022 @default.
- W3163425731 countsByYear W31634257312023 @default.
- W3163425731 crossrefType "journal-article" @default.
- W3163425731 hasAuthorship W3163425731A5006793709 @default.
- W3163425731 hasAuthorship W3163425731A5019595634 @default.
- W3163425731 hasAuthorship W3163425731A5048826252 @default.
- W3163425731 hasAuthorship W3163425731A5077933989 @default.
- W3163425731 hasAuthorship W3163425731A5091117089 @default.
- W3163425731 hasConcept C104317684 @default.
- W3163425731 hasConcept C108583219 @default.
- W3163425731 hasConcept C111919701 @default.
- W3163425731 hasConcept C11413529 @default.
- W3163425731 hasConcept C127313418 @default.
- W3163425731 hasConcept C153180895 @default.
- W3163425731 hasConcept C154945302 @default.
- W3163425731 hasConcept C163985040 @default.
- W3163425731 hasConcept C165205528 @default.
- W3163425731 hasConcept C185592680 @default.
- W3163425731 hasConcept C1893757 @default.
- W3163425731 hasConcept C41008148 @default.
- W3163425731 hasConcept C50644808 @default.
- W3163425731 hasConcept C54187759 @default.
- W3163425731 hasConcept C55493867 @default.
- W3163425731 hasConcept C63479239 @default.
- W3163425731 hasConcept C77928131 @default.
- W3163425731 hasConcept C8058405 @default.
- W3163425731 hasConcept C81363708 @default.
- W3163425731 hasConceptScore W3163425731C104317684 @default.
- W3163425731 hasConceptScore W3163425731C108583219 @default.
- W3163425731 hasConceptScore W3163425731C111919701 @default.
- W3163425731 hasConceptScore W3163425731C11413529 @default.
- W3163425731 hasConceptScore W3163425731C127313418 @default.
- W3163425731 hasConceptScore W3163425731C153180895 @default.
- W3163425731 hasConceptScore W3163425731C154945302 @default.
- W3163425731 hasConceptScore W3163425731C163985040 @default.
- W3163425731 hasConceptScore W3163425731C165205528 @default.
- W3163425731 hasConceptScore W3163425731C185592680 @default.
- W3163425731 hasConceptScore W3163425731C1893757 @default.
- W3163425731 hasConceptScore W3163425731C41008148 @default.
- W3163425731 hasConceptScore W3163425731C50644808 @default.
- W3163425731 hasConceptScore W3163425731C54187759 @default.
- W3163425731 hasConceptScore W3163425731C55493867 @default.
- W3163425731 hasConceptScore W3163425731C63479239 @default.
- W3163425731 hasConceptScore W3163425731C77928131 @default.
- W3163425731 hasConceptScore W3163425731C8058405 @default.
- W3163425731 hasConceptScore W3163425731C81363708 @default.
- W3163425731 hasFunder F4320321001 @default.
- W3163425731 hasIssue "5" @default.
- W3163425731 hasLocation W31634257311 @default.
- W3163425731 hasOpenAccess W3163425731 @default.
- W3163425731 hasPrimaryLocation W31634257311 @default.
- W3163425731 hasRelatedWork W2731899572 @default.
- W3163425731 hasRelatedWork W2732542196 @default.
- W3163425731 hasRelatedWork W2738221750 @default.
- W3163425731 hasRelatedWork W3116150086 @default.