Matches in SemOpenAlex for { <https://semopenalex.org/work/W3163519726> ?p ?o ?g. }
- W3163519726 endingPage "2468" @default.
- W3163519726 startingPage "2455" @default.
- W3163519726 abstract "Automated multi-label chest X-ray (CXR) image classification has recently made significant progress in clinical diagnosis based on the advanced deep learning techniques. However, most existing methods mainly focus on analyzing locality visual cues from a single image but fail to leverage the underlying explicit correlations among different images for precise disease diagnosis. By contrast, an experienced radiologist expertizes in transferring knowledge from previous tasks to diagnose the present radiograph. To enable the machine like a radiologist, this paper proposes a novel Semantic Similarity Graph Embedding (SSGE) framework, which explicitly explores the semantic similarities among images to optimize the visual feature embedding for improving the performance of multi-label CXR images classification. Specifically, the proposed SSGE framework contains three main components: the image feature embedding (IFE) module, similarity graph construction (SGC) module, and semantic similarity learning (SSL) module. To realize interactive teaching and learning between visual and semantic information, the proposed SSGE framework is built on the “Teacher-Student” (semantic-visual) learning mechanism. With the guidance and supervision of the cross-image similarity graph generated by the SGC module, the SSL module leverages Graph Convolutional Network (GCN) to adaptively recalibrate the multi-image feature representations extracted from the IFE module, which guarantees their semantic consistency. Furthermore, we propose a novel re-weighting strategy to learn a more optimal semantic-similarity graph for the information propagation of the GCN layers. Extensive experiments on two benchmark datasets demonstrate the effectiveness of the proposed method in comparison with some state-of-the-art baselines." @default.
- W3163519726 created "2021-05-24" @default.
- W3163519726 creator A5004565086 @default.
- W3163519726 creator A5009278704 @default.
- W3163519726 creator A5019972814 @default.
- W3163519726 creator A5055183002 @default.
- W3163519726 creator A5088888083 @default.
- W3163519726 date "2022-04-01" @default.
- W3163519726 modified "2023-10-06" @default.
- W3163519726 title "Multi-Label Chest X-Ray Image Classification via Semantic Similarity Graph Embedding" @default.
- W3163519726 cites W114517082 @default.
- W3163519726 cites W1526045365 @default.
- W3163519726 cites W2006617902 @default.
- W3163519726 cites W2050773153 @default.
- W3163519726 cites W2075588526 @default.
- W3163519726 cites W2102634410 @default.
- W3163519726 cites W2334763311 @default.
- W3163519726 cites W2886327376 @default.
- W3163519726 cites W2897806204 @default.
- W3163519726 cites W2901030517 @default.
- W3163519726 cites W2904307226 @default.
- W3163519726 cites W2932399282 @default.
- W3163519726 cites W2945689170 @default.
- W3163519726 cites W2948058585 @default.
- W3163519726 cites W2962708065 @default.
- W3163519726 cites W2962858109 @default.
- W3163519726 cites W2963446712 @default.
- W3163519726 cites W2963466845 @default.
- W3163519726 cites W2963486920 @default.
- W3163519726 cites W2963967185 @default.
- W3163519726 cites W2979418973 @default.
- W3163519726 cites W2982112268 @default.
- W3163519726 cites W2988214655 @default.
- W3163519726 cites W2989100348 @default.
- W3163519726 cites W3002476946 @default.
- W3163519726 cites W3023251276 @default.
- W3163519726 cites W3036051865 @default.
- W3163519726 cites W3041063529 @default.
- W3163519726 cites W3101156210 @default.
- W3163519726 cites W3106090851 @default.
- W3163519726 doi "https://doi.org/10.1109/tcsvt.2021.3079900" @default.
- W3163519726 hasPublicationYear "2022" @default.
- W3163519726 type Work @default.
- W3163519726 sameAs 3163519726 @default.
- W3163519726 citedByCount "15" @default.
- W3163519726 countsByYear W31635197262021 @default.
- W3163519726 countsByYear W31635197262022 @default.
- W3163519726 countsByYear W31635197262023 @default.
- W3163519726 crossrefType "journal-article" @default.
- W3163519726 hasAuthorship W3163519726A5004565086 @default.
- W3163519726 hasAuthorship W3163519726A5009278704 @default.
- W3163519726 hasAuthorship W3163519726A5019972814 @default.
- W3163519726 hasAuthorship W3163519726A5055183002 @default.
- W3163519726 hasAuthorship W3163519726A5088888083 @default.
- W3163519726 hasConcept C103278499 @default.
- W3163519726 hasConcept C115961682 @default.
- W3163519726 hasConcept C130318100 @default.
- W3163519726 hasConcept C132525143 @default.
- W3163519726 hasConcept C138885662 @default.
- W3163519726 hasConcept C153083717 @default.
- W3163519726 hasConcept C153180895 @default.
- W3163519726 hasConcept C154945302 @default.
- W3163519726 hasConcept C2776401178 @default.
- W3163519726 hasConcept C36464697 @default.
- W3163519726 hasConcept C41008148 @default.
- W3163519726 hasConcept C41608201 @default.
- W3163519726 hasConcept C41895202 @default.
- W3163519726 hasConcept C59404180 @default.
- W3163519726 hasConcept C80444323 @default.
- W3163519726 hasConceptScore W3163519726C103278499 @default.
- W3163519726 hasConceptScore W3163519726C115961682 @default.
- W3163519726 hasConceptScore W3163519726C130318100 @default.
- W3163519726 hasConceptScore W3163519726C132525143 @default.
- W3163519726 hasConceptScore W3163519726C138885662 @default.
- W3163519726 hasConceptScore W3163519726C153083717 @default.
- W3163519726 hasConceptScore W3163519726C153180895 @default.
- W3163519726 hasConceptScore W3163519726C154945302 @default.
- W3163519726 hasConceptScore W3163519726C2776401178 @default.
- W3163519726 hasConceptScore W3163519726C36464697 @default.
- W3163519726 hasConceptScore W3163519726C41008148 @default.
- W3163519726 hasConceptScore W3163519726C41608201 @default.
- W3163519726 hasConceptScore W3163519726C41895202 @default.
- W3163519726 hasConceptScore W3163519726C59404180 @default.
- W3163519726 hasConceptScore W3163519726C80444323 @default.
- W3163519726 hasFunder F4320337111 @default.
- W3163519726 hasIssue "4" @default.
- W3163519726 hasLocation W31635197261 @default.
- W3163519726 hasOpenAccess W3163519726 @default.
- W3163519726 hasPrimaryLocation W31635197261 @default.
- W3163519726 hasRelatedWork W2374959876 @default.
- W3163519726 hasRelatedWork W2382607599 @default.
- W3163519726 hasRelatedWork W2546942002 @default.
- W3163519726 hasRelatedWork W2605245466 @default.
- W3163519726 hasRelatedWork W2970216048 @default.
- W3163519726 hasRelatedWork W2998168123 @default.
- W3163519726 hasRelatedWork W3013167367 @default.
- W3163519726 hasRelatedWork W4200347932 @default.
- W3163519726 hasRelatedWork W4287995534 @default.