Matches in SemOpenAlex for { <https://semopenalex.org/work/W3163529517> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W3163529517 endingPage "790" @default.
- W3163529517 startingPage "781" @default.
- W3163529517 abstract "The world came to a standstill in 2020 when a virus, SARS-CoV-2 started infecting people, and more shockingly was deadly. Lockdowns were enforced all over the world. Social distancing and self-quarantine became the need of the hour to prevent oneself from succumbing to this virus. One major concern regarding this disease was its detection since the disease was contagious and had a large incubation period. Reverse Transmission Polymerase Chain Reaction tests (RT-PCR) were used commonly but were often showing false negatives, leading to further transmission as soon as the patient was discharged. However, radiographic analysis including methods such as chest X-rays or Computed Tomography (CT) scans led the race of revealing with the highest accuracy, and reliability, if an infected patient who was with or without symptoms, was a victim to this lethal syndrome. We demonstrate a study over how CT scans and chest X-rays are beneficial for the detection of the COVID-19 virus using advanced Artificial Intelligence (AI) technologies, and we used the deep learning algorithm Convolutional Neural Networks (CNN) using Tensorflow and Keras for radiology image classification of X-rays and CT scans. These are highly advantageous as they detect the development of COVID-19, as well as other critical ailments like various types of pneumonia. This transfer learning approach successfully detected chest X-ray and CT scan patterns and showed precise medical diagnostics with high levels of accuracy up to 89% while detecting SARS-CoV-2." @default.
- W3163529517 created "2021-05-24" @default.
- W3163529517 creator A5016896011 @default.
- W3163529517 creator A5020802302 @default.
- W3163529517 creator A5026649835 @default.
- W3163529517 creator A5044466746 @default.
- W3163529517 creator A5060700016 @default.
- W3163529517 date "2021-01-01" @default.
- W3163529517 modified "2023-09-27" @default.
- W3163529517 title "Real-Time COVID-19 Detection and Prediction Using Chest X-rays and CT Scan: A Comparative Study Using AI" @default.
- W3163529517 cites W1901129140 @default.
- W3163529517 cites W2345010043 @default.
- W3163529517 cites W2395579298 @default.
- W3163529517 cites W2618530766 @default.
- W3163529517 cites W3007497549 @default.
- W3163529517 cites W3007940623 @default.
- W3163529517 cites W3011149445 @default.
- W3163529517 cites W3013601031 @default.
- W3163529517 cites W3017855299 @default.
- W3163529517 cites W3017981638 @default.
- W3163529517 cites W3031898468 @default.
- W3163529517 cites W4205947740 @default.
- W3163529517 doi "https://doi.org/10.1007/978-981-33-4604-8_60" @default.
- W3163529517 hasPublicationYear "2021" @default.
- W3163529517 type Work @default.
- W3163529517 sameAs 3163529517 @default.
- W3163529517 citedByCount "0" @default.
- W3163529517 crossrefType "book-chapter" @default.
- W3163529517 hasAuthorship W3163529517A5016896011 @default.
- W3163529517 hasAuthorship W3163529517A5020802302 @default.
- W3163529517 hasAuthorship W3163529517A5026649835 @default.
- W3163529517 hasAuthorship W3163529517A5044466746 @default.
- W3163529517 hasAuthorship W3163529517A5060700016 @default.
- W3163529517 hasConcept C108583219 @default.
- W3163529517 hasConcept C126322002 @default.
- W3163529517 hasConcept C126838900 @default.
- W3163529517 hasConcept C142724271 @default.
- W3163529517 hasConcept C154945302 @default.
- W3163529517 hasConcept C159047783 @default.
- W3163529517 hasConcept C2777914695 @default.
- W3163529517 hasConcept C2779134260 @default.
- W3163529517 hasConcept C2781402358 @default.
- W3163529517 hasConcept C3007834351 @default.
- W3163529517 hasConcept C3008058167 @default.
- W3163529517 hasConcept C36454342 @default.
- W3163529517 hasConcept C41008148 @default.
- W3163529517 hasConcept C524204448 @default.
- W3163529517 hasConcept C544519230 @default.
- W3163529517 hasConcept C71924100 @default.
- W3163529517 hasConcept C761482 @default.
- W3163529517 hasConcept C76155785 @default.
- W3163529517 hasConcept C81363708 @default.
- W3163529517 hasConceptScore W3163529517C108583219 @default.
- W3163529517 hasConceptScore W3163529517C126322002 @default.
- W3163529517 hasConceptScore W3163529517C126838900 @default.
- W3163529517 hasConceptScore W3163529517C142724271 @default.
- W3163529517 hasConceptScore W3163529517C154945302 @default.
- W3163529517 hasConceptScore W3163529517C159047783 @default.
- W3163529517 hasConceptScore W3163529517C2777914695 @default.
- W3163529517 hasConceptScore W3163529517C2779134260 @default.
- W3163529517 hasConceptScore W3163529517C2781402358 @default.
- W3163529517 hasConceptScore W3163529517C3007834351 @default.
- W3163529517 hasConceptScore W3163529517C3008058167 @default.
- W3163529517 hasConceptScore W3163529517C36454342 @default.
- W3163529517 hasConceptScore W3163529517C41008148 @default.
- W3163529517 hasConceptScore W3163529517C524204448 @default.
- W3163529517 hasConceptScore W3163529517C544519230 @default.
- W3163529517 hasConceptScore W3163529517C71924100 @default.
- W3163529517 hasConceptScore W3163529517C761482 @default.
- W3163529517 hasConceptScore W3163529517C76155785 @default.
- W3163529517 hasConceptScore W3163529517C81363708 @default.
- W3163529517 hasLocation W31635295171 @default.
- W3163529517 hasOpenAccess W3163529517 @default.
- W3163529517 hasPrimaryLocation W31635295171 @default.
- W3163529517 hasRelatedWork W2731899572 @default.
- W3163529517 hasRelatedWork W3040868419 @default.
- W3163529517 hasRelatedWork W3084704945 @default.
- W3163529517 hasRelatedWork W3093305755 @default.
- W3163529517 hasRelatedWork W3116150086 @default.
- W3163529517 hasRelatedWork W3133861977 @default.
- W3163529517 hasRelatedWork W3186502799 @default.
- W3163529517 hasRelatedWork W4200173597 @default.
- W3163529517 hasRelatedWork W4312417841 @default.
- W3163529517 hasRelatedWork W4321369474 @default.
- W3163529517 isParatext "false" @default.
- W3163529517 isRetracted "false" @default.
- W3163529517 magId "3163529517" @default.
- W3163529517 workType "book-chapter" @default.