Matches in SemOpenAlex for { <https://semopenalex.org/work/W3163550658> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W3163550658 endingPage "58" @default.
- W3163550658 startingPage "47" @default.
- W3163550658 abstract "Aspect-based sentiment analysis has obtained great success in recent years. Most of the existing work focuses on determining the sentiment polarity of the given aspect according to the given text, while little attention has been paid to the visual information as well as multimodality content for aspect-based sentiment analysis. Multimodal content is becoming increasingly popular in mainstream online social platforms and can help better extract user sentiments toward a given aspect. There are only few studies focusing on this new task: Multimodal Aspect-based Sentiment Analysis ( MASA ), which performs aspect-based sentiment analysis by integrating both texts and images. In this paper, we propose a mutimodal interaction model for MASA to learn the relationship among the text, image and aspect via interaction layers and adversarial training. Additionally, we build a new large-scale dataset for this task, named MASAD , which involves seven domains and 57 aspect categories with 38 k image-text pairs. Extensive experiments have been conducted on the proposed dataset to provide several baselines for this task. Though our models obtain significant improvement for this task, empirical results show that MASA is more challenging than textual aspect-based sentiment analysis, which indicates that MASA remains a challenging open problem and requires further efforts." @default.
- W3163550658 created "2021-05-24" @default.
- W3163550658 creator A5000409439 @default.
- W3163550658 creator A5010540039 @default.
- W3163550658 creator A5018749138 @default.
- W3163550658 creator A5022908126 @default.
- W3163550658 creator A5083964406 @default.
- W3163550658 date "2021-09-01" @default.
- W3163550658 modified "2023-09-29" @default.
- W3163550658 title "MASAD: A large-scale dataset for multimodal aspect-based sentiment analysis" @default.
- W3163550658 cites W2079735306 @default.
- W3163550658 cites W2586286573 @default.
- W3163550658 cites W2612769033 @default.
- W3163550658 cites W2740567223 @default.
- W3163550658 cites W2789190634 @default.
- W3163550658 cites W2947851192 @default.
- W3163550658 cites W2962808042 @default.
- W3163550658 cites W2963710346 @default.
- W3163550658 cites W2991433488 @default.
- W3163550658 cites W3044187822 @default.
- W3163550658 doi "https://doi.org/10.1016/j.neucom.2021.05.040" @default.
- W3163550658 hasPublicationYear "2021" @default.
- W3163550658 type Work @default.
- W3163550658 sameAs 3163550658 @default.
- W3163550658 citedByCount "15" @default.
- W3163550658 countsByYear W31635506582022 @default.
- W3163550658 countsByYear W31635506582023 @default.
- W3163550658 crossrefType "journal-article" @default.
- W3163550658 hasAuthorship W3163550658A5000409439 @default.
- W3163550658 hasAuthorship W3163550658A5010540039 @default.
- W3163550658 hasAuthorship W3163550658A5018749138 @default.
- W3163550658 hasAuthorship W3163550658A5022908126 @default.
- W3163550658 hasAuthorship W3163550658A5083964406 @default.
- W3163550658 hasConcept C119857082 @default.
- W3163550658 hasConcept C121332964 @default.
- W3163550658 hasConcept C138885662 @default.
- W3163550658 hasConcept C154945302 @default.
- W3163550658 hasConcept C162324750 @default.
- W3163550658 hasConcept C187736073 @default.
- W3163550658 hasConcept C204321447 @default.
- W3163550658 hasConcept C23123220 @default.
- W3163550658 hasConcept C2522767166 @default.
- W3163550658 hasConcept C27206212 @default.
- W3163550658 hasConcept C2777617010 @default.
- W3163550658 hasConcept C2778755073 @default.
- W3163550658 hasConcept C2780451532 @default.
- W3163550658 hasConcept C41008148 @default.
- W3163550658 hasConcept C62520636 @default.
- W3163550658 hasConcept C66402592 @default.
- W3163550658 hasConceptScore W3163550658C119857082 @default.
- W3163550658 hasConceptScore W3163550658C121332964 @default.
- W3163550658 hasConceptScore W3163550658C138885662 @default.
- W3163550658 hasConceptScore W3163550658C154945302 @default.
- W3163550658 hasConceptScore W3163550658C162324750 @default.
- W3163550658 hasConceptScore W3163550658C187736073 @default.
- W3163550658 hasConceptScore W3163550658C204321447 @default.
- W3163550658 hasConceptScore W3163550658C23123220 @default.
- W3163550658 hasConceptScore W3163550658C2522767166 @default.
- W3163550658 hasConceptScore W3163550658C27206212 @default.
- W3163550658 hasConceptScore W3163550658C2777617010 @default.
- W3163550658 hasConceptScore W3163550658C2778755073 @default.
- W3163550658 hasConceptScore W3163550658C2780451532 @default.
- W3163550658 hasConceptScore W3163550658C41008148 @default.
- W3163550658 hasConceptScore W3163550658C62520636 @default.
- W3163550658 hasConceptScore W3163550658C66402592 @default.
- W3163550658 hasFunder F4320322370 @default.
- W3163550658 hasLocation W31635506581 @default.
- W3163550658 hasOpenAccess W3163550658 @default.
- W3163550658 hasPrimaryLocation W31635506581 @default.
- W3163550658 hasRelatedWork W1509467138 @default.
- W3163550658 hasRelatedWork W2081647779 @default.
- W3163550658 hasRelatedWork W2176304865 @default.
- W3163550658 hasRelatedWork W2901590103 @default.
- W3163550658 hasRelatedWork W3015597294 @default.
- W3163550658 hasRelatedWork W3107602296 @default.
- W3163550658 hasRelatedWork W3192794374 @default.
- W3163550658 hasRelatedWork W4200526184 @default.
- W3163550658 hasRelatedWork W4281608370 @default.
- W3163550658 hasRelatedWork W4285815787 @default.
- W3163550658 hasVolume "455" @default.
- W3163550658 isParatext "false" @default.
- W3163550658 isRetracted "false" @default.
- W3163550658 magId "3163550658" @default.
- W3163550658 workType "article" @default.