Matches in SemOpenAlex for { <https://semopenalex.org/work/W3163605308> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W3163605308 endingPage "10719" @default.
- W3163605308 startingPage "10703" @default.
- W3163605308 abstract "Text Sentiment analysis is the process of predicting whether a segment of text has opinionated or objective content and analyzing the polarity of the text’s sentiment. Understanding the needs and behavior of the target customer plays a vital role in the success of the business so the sentiment analysis process would help the marketer to improve the quality of the product as well as a shopper to buy the correct product. Due to its automatic learning capability, deep learning is the current research interest in Natural language processing. Skip-gram architecture is used in the proposed model for better extraction of the semantic relationships as well as contextual information of words. However, the main contribution of this work is Adaptive Particle Swarm Optimization (APSO) algorithm based LSTM for sentiment analysis. LSTM is used in the proposed model for understanding complex patterns in textual data. To improve the performance of the LSTM, weight parameters are enhanced by presenting the Adaptive PSO algorithm. Opposition based learning (OBL) method combined with PSO algorithm becomes the Adaptive Particle Swarm Optimization (APSO) classifier which assists LSTM in selecting optimal weight for the environment in less number of iterations. So APSO - LSTM ‘s ability in adjusting the attributes such as optimal weights and learning rates combined with the good hyper parameter choices leads to improved accuracy and reduces losses. Extensive experiments were conducted on four datasets proved that our proposed APSO-LSTM model secured higher accuracy over the classical methods such as traditional LSTM, ANN, and SVM. According to simulation results, the proposed model is outperforming other existing models." @default.
- W3163605308 created "2021-05-24" @default.
- W3163605308 creator A5054668704 @default.
- W3163605308 creator A5087172193 @default.
- W3163605308 date "2021-06-21" @default.
- W3163605308 modified "2023-09-27" @default.
- W3163605308 title "Adaptive particle swarm optimization algorithm based long short-term memory networks for sentiment analysis" @default.
- W3163605308 cites W1965606641 @default.
- W3163605308 cites W2143455647 @default.
- W3163605308 cites W2510787547 @default.
- W3163605308 cites W2582695630 @default.
- W3163605308 cites W2612769033 @default.
- W3163605308 cites W2693543755 @default.
- W3163605308 cites W2786515081 @default.
- W3163605308 cites W2885195348 @default.
- W3163605308 cites W2886444838 @default.
- W3163605308 cites W2888777359 @default.
- W3163605308 cites W2889366722 @default.
- W3163605308 cites W2899329739 @default.
- W3163605308 cites W2911559398 @default.
- W3163605308 cites W2926290169 @default.
- W3163605308 cites W2941799245 @default.
- W3163605308 cites W2950670279 @default.
- W3163605308 cites W2958325372 @default.
- W3163605308 cites W2967740805 @default.
- W3163605308 cites W2973508239 @default.
- W3163605308 cites W2980970477 @default.
- W3163605308 cites W2990803728 @default.
- W3163605308 cites W2997064598 @default.
- W3163605308 cites W3003409257 @default.
- W3163605308 cites W3003681195 @default.
- W3163605308 cites W3021279605 @default.
- W3163605308 cites W3098239359 @default.
- W3163605308 cites W4205184193 @default.
- W3163605308 doi "https://doi.org/10.3233/jifs-201644" @default.
- W3163605308 hasPublicationYear "2021" @default.
- W3163605308 type Work @default.
- W3163605308 sameAs 3163605308 @default.
- W3163605308 citedByCount "0" @default.
- W3163605308 crossrefType "journal-article" @default.
- W3163605308 hasAuthorship W3163605308A5054668704 @default.
- W3163605308 hasAuthorship W3163605308A5087172193 @default.
- W3163605308 hasConcept C119857082 @default.
- W3163605308 hasConcept C12267149 @default.
- W3163605308 hasConcept C124101348 @default.
- W3163605308 hasConcept C154945302 @default.
- W3163605308 hasConcept C41008148 @default.
- W3163605308 hasConcept C66402592 @default.
- W3163605308 hasConcept C85617194 @default.
- W3163605308 hasConcept C95623464 @default.
- W3163605308 hasConceptScore W3163605308C119857082 @default.
- W3163605308 hasConceptScore W3163605308C12267149 @default.
- W3163605308 hasConceptScore W3163605308C124101348 @default.
- W3163605308 hasConceptScore W3163605308C154945302 @default.
- W3163605308 hasConceptScore W3163605308C41008148 @default.
- W3163605308 hasConceptScore W3163605308C66402592 @default.
- W3163605308 hasConceptScore W3163605308C85617194 @default.
- W3163605308 hasConceptScore W3163605308C95623464 @default.
- W3163605308 hasIssue "6" @default.
- W3163605308 hasLocation W31636053081 @default.
- W3163605308 hasOpenAccess W3163605308 @default.
- W3163605308 hasPrimaryLocation W31636053081 @default.
- W3163605308 hasRelatedWork W1996541855 @default.
- W3163605308 hasRelatedWork W2101819884 @default.
- W3163605308 hasRelatedWork W2937631562 @default.
- W3163605308 hasRelatedWork W2961085424 @default.
- W3163605308 hasRelatedWork W2979979539 @default.
- W3163605308 hasRelatedWork W3136979370 @default.
- W3163605308 hasRelatedWork W3192794374 @default.
- W3163605308 hasRelatedWork W3194539120 @default.
- W3163605308 hasRelatedWork W3195168932 @default.
- W3163605308 hasRelatedWork W4205958290 @default.
- W3163605308 hasVolume "40" @default.
- W3163605308 isParatext "false" @default.
- W3163605308 isRetracted "false" @default.
- W3163605308 magId "3163605308" @default.
- W3163605308 workType "article" @default.