Matches in SemOpenAlex for { <https://semopenalex.org/work/W3163620281> ?p ?o ?g. }
- W3163620281 endingPage "727" @default.
- W3163620281 startingPage "709" @default.
- W3163620281 abstract "Summary Elongate inclusions immersed in a viscous fluid generally rotate at a rate that is different from the local angular velocity of the flow. Often, a net alignment of the inclusions develops, and the resulting shape preferred orientation of the particle ensemble can then be used as a strain marker that allows reconstruction of the fluid’s velocity field. Much of the previous work on the dynamics of flow-induced particle rotations has focused on spatially homogeneous flows with large-scale tectonic deformations as the main application. Recently, the theory has been extended to spatially varying flows, such as magma with embedded crystals moving through a volcanic plumbing system. Additionally, an evolution equation has been introduced for the probability density function of crystal orientations. Here, we apply this new theory to a number of simple, 2-D flow geometries commonly encountered in magmatic intrusions, such as flow from a dyke into a reservoir or from a reservoir into a dyke, flow inside an inflating or deflating reservoir, flow in a dyke with a sharp bend, and thermal convection in a magma chamber. The main purpose is to provide a guide for interpreting field observations and for setting up more complex flow models with embedded crystals. As a general rule, we find that a larger aspect ratio of the embedded crystals causes a more coherent alignment of the crystals, while it has only a minor effect on the geometry of the alignment pattern. Due to various perturbations in the crystal rotation equations that are expected in natural systems, we show that the time-periodic behaviour found in idealized systems is probably short-lived in nature, and the crystal alignment is well described by the time-averaged solution. We also confirm some earlier findings. For example, near channel walls, fluid flow often follows the bounding surface and the resulting simple shear flow causes preferred crystal orientations that are approximately parallel to the boundary. Where pure shear deformation dominates, there is a tendency for crystals to orient themselves in the direction of the greatest tensile strain rate. Where flow impinges on a boundary, for example in an inflating magma chamber or as part of a thermal convection pattern, the stretching component of pure shear aligns with the boundary, and the crystals orient themselves in that direction. In the field, this local pattern may be difficult to distinguish from a boundary-parallel simple shear flow. Pure shear also dominates along the walls of a deflating magma chamber and in places where the flow turns away from the reservoir walls, but in these locations, the preferred crystal orientation is perpendicular to the wall. Overall, we find that our calculated patterns of crystal orientations agree well with results from analogue experiments where similar geometries are available." @default.
- W3163620281 created "2021-05-24" @default.
- W3163620281 creator A5014107283 @default.
- W3163620281 creator A5018598463 @default.
- W3163620281 creator A5030055037 @default.
- W3163620281 creator A5053906869 @default.
- W3163620281 creator A5076253592 @default.
- W3163620281 date "2021-03-31" @default.
- W3163620281 modified "2023-09-23" @default.
- W3163620281 title "Crystal rotations and alignment in spatially varying magma flows: 2-D examples of common subvolcanic flow geometries" @default.
- W3163620281 cites W1485126372 @default.
- W3163620281 cites W1591303473 @default.
- W3163620281 cites W1851564839 @default.
- W3163620281 cites W1965371673 @default.
- W3163620281 cites W1967033850 @default.
- W3163620281 cites W1967245511 @default.
- W3163620281 cites W1970655155 @default.
- W3163620281 cites W1972998490 @default.
- W3163620281 cites W1975685950 @default.
- W3163620281 cites W1977938414 @default.
- W3163620281 cites W1979521252 @default.
- W3163620281 cites W1986079379 @default.
- W3163620281 cites W1987476990 @default.
- W3163620281 cites W1987818415 @default.
- W3163620281 cites W1988106410 @default.
- W3163620281 cites W1993538053 @default.
- W3163620281 cites W1995757562 @default.
- W3163620281 cites W1999536727 @default.
- W3163620281 cites W2000076166 @default.
- W3163620281 cites W2003581104 @default.
- W3163620281 cites W2007833900 @default.
- W3163620281 cites W2010652605 @default.
- W3163620281 cites W2019235102 @default.
- W3163620281 cites W2028324772 @default.
- W3163620281 cites W2028645817 @default.
- W3163620281 cites W2028746215 @default.
- W3163620281 cites W2030744344 @default.
- W3163620281 cites W2031293425 @default.
- W3163620281 cites W2032325704 @default.
- W3163620281 cites W2033720239 @default.
- W3163620281 cites W2039786874 @default.
- W3163620281 cites W2046753332 @default.
- W3163620281 cites W2054456942 @default.
- W3163620281 cites W2056340662 @default.
- W3163620281 cites W2058066760 @default.
- W3163620281 cites W2058982328 @default.
- W3163620281 cites W2061953781 @default.
- W3163620281 cites W2064576293 @default.
- W3163620281 cites W2066527465 @default.
- W3163620281 cites W2068419314 @default.
- W3163620281 cites W2068655264 @default.
- W3163620281 cites W2076362211 @default.
- W3163620281 cites W2079674820 @default.
- W3163620281 cites W2080176203 @default.
- W3163620281 cites W2082775163 @default.
- W3163620281 cites W2085285699 @default.
- W3163620281 cites W2085328178 @default.
- W3163620281 cites W2088782608 @default.
- W3163620281 cites W2094957216 @default.
- W3163620281 cites W2100608999 @default.
- W3163620281 cites W2110875842 @default.
- W3163620281 cites W2115675776 @default.
- W3163620281 cites W2118705733 @default.
- W3163620281 cites W2121798668 @default.
- W3163620281 cites W2125876371 @default.
- W3163620281 cites W2129219887 @default.
- W3163620281 cites W2129596460 @default.
- W3163620281 cites W2131301399 @default.
- W3163620281 cites W2133537427 @default.
- W3163620281 cites W2134066908 @default.
- W3163620281 cites W2136990385 @default.
- W3163620281 cites W2138029714 @default.
- W3163620281 cites W2151124133 @default.
- W3163620281 cites W2157114284 @default.
- W3163620281 cites W2164828314 @default.
- W3163620281 cites W2167174059 @default.
- W3163620281 cites W2325598379 @default.
- W3163620281 cites W2328265254 @default.
- W3163620281 cites W2332488232 @default.
- W3163620281 cites W2727103234 @default.
- W3163620281 cites W2789511358 @default.
- W3163620281 cites W2803748304 @default.
- W3163620281 cites W2946054088 @default.
- W3163620281 cites W2949648393 @default.
- W3163620281 cites W2983838792 @default.
- W3163620281 cites W3005866878 @default.
- W3163620281 cites W4231633702 @default.
- W3163620281 doi "https://doi.org/10.1093/gji/ggab127" @default.
- W3163620281 hasPublicationYear "2021" @default.
- W3163620281 type Work @default.
- W3163620281 sameAs 3163620281 @default.
- W3163620281 citedByCount "4" @default.
- W3163620281 countsByYear W31636202812021 @default.
- W3163620281 countsByYear W31636202812022 @default.
- W3163620281 crossrefType "journal-article" @default.
- W3163620281 hasAuthorship W3163620281A5014107283 @default.
- W3163620281 hasAuthorship W3163620281A5018598463 @default.
- W3163620281 hasAuthorship W3163620281A5030055037 @default.