Matches in SemOpenAlex for { <https://semopenalex.org/work/W3163674712> ?p ?o ?g. }
- W3163674712 endingPage "294" @default.
- W3163674712 startingPage "283" @default.
- W3163674712 abstract "Infrared thermography is a technique that can detect anomalies in temperature patterns which can indicate some breast pathologies including breast cancer. One limitation of the method is the absence of standardised thermography interpretation procedures. Deep learning models have been used for pattern recognition and classification of objects and have been adopted as an adjunct methodology in medical imaging diagnosis. In this paper, the use of a deep convolutional neural network (CNN) with transfer learning is proposed to automatically classify thermograms into two classes (normal and abnormal). A population of 311 female subjects was considered analysing two approaches to test the CNN’s performance: one with a balanced class distribution and the second study in a typical screening cohort, with a low prevalence of abnormal thermograms. Results showed that the transfer-learned ResNet-101 model had a sensitivity of 92.3% and a specificity of 53.8%, while with an unbalanced distribution the values were 84.6% and 65.3%, respectively. These results suggest that the model presented in this work can classify abnormal thermograms with high sensitivity which validates the use of infrared thermography as an adjunct method for breast cancer screening." @default.
- W3163674712 created "2021-05-24" @default.
- W3163674712 creator A5002437307 @default.
- W3163674712 creator A5048449561 @default.
- W3163674712 creator A5057423896 @default.
- W3163674712 creator A5060339393 @default.
- W3163674712 creator A5084131149 @default.
- W3163674712 creator A5084500791 @default.
- W3163674712 date "2021-05-06" @default.
- W3163674712 modified "2023-10-05" @default.
- W3163674712 title "Deep convolutional neural networks for classifying breast cancer using infrared thermography" @default.
- W3163674712 cites W1677182931 @default.
- W3163674712 cites W1963973091 @default.
- W3163674712 cites W1975784266 @default.
- W3163674712 cites W1979651826 @default.
- W3163674712 cites W2014206079 @default.
- W3163674712 cites W2023718290 @default.
- W3163674712 cites W2024023543 @default.
- W3163674712 cites W2050812355 @default.
- W3163674712 cites W2073996779 @default.
- W3163674712 cites W2116241809 @default.
- W3163674712 cites W2147595228 @default.
- W3163674712 cites W2150306018 @default.
- W3163674712 cites W2153574542 @default.
- W3163674712 cites W2158646588 @default.
- W3163674712 cites W2167868121 @default.
- W3163674712 cites W2194775991 @default.
- W3163674712 cites W2270296303 @default.
- W3163674712 cites W2325015832 @default.
- W3163674712 cites W2331746890 @default.
- W3163674712 cites W2465621303 @default.
- W3163674712 cites W2515525831 @default.
- W3163674712 cites W2586089970 @default.
- W3163674712 cites W2588570836 @default.
- W3163674712 cites W2592376082 @default.
- W3163674712 cites W2607358768 @default.
- W3163674712 cites W2891146096 @default.
- W3163674712 cites W2892221324 @default.
- W3163674712 cites W2895341107 @default.
- W3163674712 cites W2902874468 @default.
- W3163674712 cites W2919115771 @default.
- W3163674712 cites W2944507165 @default.
- W3163674712 cites W2944517541 @default.
- W3163674712 cites W2949064955 @default.
- W3163674712 cites W2963459241 @default.
- W3163674712 cites W2963905099 @default.
- W3163674712 cites W2970091429 @default.
- W3163674712 cites W2972087877 @default.
- W3163674712 cites W3080989153 @default.
- W3163674712 cites W3149357319 @default.
- W3163674712 doi "https://doi.org/10.1080/17686733.2021.1918514" @default.
- W3163674712 hasPublicationYear "2021" @default.
- W3163674712 type Work @default.
- W3163674712 sameAs 3163674712 @default.
- W3163674712 citedByCount "20" @default.
- W3163674712 countsByYear W31636747122021 @default.
- W3163674712 countsByYear W31636747122022 @default.
- W3163674712 countsByYear W31636747122023 @default.
- W3163674712 crossrefType "journal-article" @default.
- W3163674712 hasAuthorship W3163674712A5002437307 @default.
- W3163674712 hasAuthorship W3163674712A5048449561 @default.
- W3163674712 hasAuthorship W3163674712A5057423896 @default.
- W3163674712 hasAuthorship W3163674712A5060339393 @default.
- W3163674712 hasAuthorship W3163674712A5084131149 @default.
- W3163674712 hasAuthorship W3163674712A5084500791 @default.
- W3163674712 hasConcept C108583219 @default.
- W3163674712 hasConcept C119857082 @default.
- W3163674712 hasConcept C120665830 @default.
- W3163674712 hasConcept C121332964 @default.
- W3163674712 hasConcept C121608353 @default.
- W3163674712 hasConcept C126322002 @default.
- W3163674712 hasConcept C127413603 @default.
- W3163674712 hasConcept C150899416 @default.
- W3163674712 hasConcept C153180895 @default.
- W3163674712 hasConcept C154945302 @default.
- W3163674712 hasConcept C158355884 @default.
- W3163674712 hasConcept C21200559 @default.
- W3163674712 hasConcept C24326235 @default.
- W3163674712 hasConcept C2779222261 @default.
- W3163674712 hasConcept C41008148 @default.
- W3163674712 hasConcept C50644808 @default.
- W3163674712 hasConcept C530470458 @default.
- W3163674712 hasConcept C71924100 @default.
- W3163674712 hasConcept C81363708 @default.
- W3163674712 hasConceptScore W3163674712C108583219 @default.
- W3163674712 hasConceptScore W3163674712C119857082 @default.
- W3163674712 hasConceptScore W3163674712C120665830 @default.
- W3163674712 hasConceptScore W3163674712C121332964 @default.
- W3163674712 hasConceptScore W3163674712C121608353 @default.
- W3163674712 hasConceptScore W3163674712C126322002 @default.
- W3163674712 hasConceptScore W3163674712C127413603 @default.
- W3163674712 hasConceptScore W3163674712C150899416 @default.
- W3163674712 hasConceptScore W3163674712C153180895 @default.
- W3163674712 hasConceptScore W3163674712C154945302 @default.
- W3163674712 hasConceptScore W3163674712C158355884 @default.
- W3163674712 hasConceptScore W3163674712C21200559 @default.
- W3163674712 hasConceptScore W3163674712C24326235 @default.
- W3163674712 hasConceptScore W3163674712C2779222261 @default.