Matches in SemOpenAlex for { <https://semopenalex.org/work/W3163688810> ?p ?o ?g. }
- W3163688810 endingPage "117235" @default.
- W3163688810 startingPage "117235" @default.
- W3163688810 abstract "The community composition and biomass of phytoplankton in shallow lakes are impacted by many environmental factors including water quality physicochemical parameters, land use in the watershed, and lake morphology. However, few studies have simultaneously evaluated the relative importance of these factors on the effect of community composition and biomass of phytoplankton. The relative importance of the water quality physicochemical parameters (water temperature [WT], total nitrogen [TN], total phosphorus [TP], pH, dissolved oxygen [DO], electrical conductivity [EC], turbidity and Secchi depth [SD]), land use (built-up land, farmland, waters, forest, grassland, and unused land) in the watershed, and lake morphology (area and depth) on the composition and biomass of phytoplankton communities were assessed in 29 subtropical shallow lakes in Wuhan, China, during different seasons from December 2017 to November 2018. The results showed that phytoplankton in all 29 lakes was mainly composed of Cyanophyta, Chlorophyta, and Bacillariophyta. Phytoplankton abundance was highest in summer and lowest in winter. We analyzed the relative importance of the three groups of variables to the community composition of the phytoplankton by variance decomposition. The results showed that the three groups of environmental variables had the highest explanation rate (> 80%) for the composition of the phytoplankton community in summer and autumn, and the explanation rates in spring and winter were 42.1% and 39.8%, respectively. The water quality physicochemical parameters were the most important variables affecting the composition of phytoplankton communities, followed by land use in the watershed. Through generalized additive model and structural equation model analysis, we found that the land use and lake morphology had minimal direct impact on the Chl-a and cell density of phytoplankton, mainly by altering the TN, TP, turbidity, SD, DO, and EC, which indirectly affected phytoplankton. WT and nutrients were still the main predictors of phytoplankton abundance. Built-up land was the main source of nitrogen and phosphorus in lakes. Correlation analysis found that forest and grassland had positive impacts on reducing lake nitrogen and phosphorus contents. This showed that increasing grassland and forest in the watershed could reduce the pollutants entering the lake. Our findings will contribute to water quality management and pollution control for subtropical shallow lakes." @default.
- W3163688810 created "2021-05-24" @default.
- W3163688810 creator A5006173478 @default.
- W3163688810 creator A5024040305 @default.
- W3163688810 creator A5034762188 @default.
- W3163688810 creator A5039545694 @default.
- W3163688810 creator A5044757881 @default.
- W3163688810 creator A5047004727 @default.
- W3163688810 creator A5049665582 @default.
- W3163688810 creator A5052224183 @default.
- W3163688810 creator A5058516723 @default.
- W3163688810 creator A5059996487 @default.
- W3163688810 creator A5071130710 @default.
- W3163688810 creator A5080429578 @default.
- W3163688810 creator A5081615670 @default.
- W3163688810 date "2021-07-01" @default.
- W3163688810 modified "2023-10-04" @default.
- W3163688810 title "The changing characteristics of phytoplankton community and biomass in subtropical shallow lakes: Coupling effects of land use patterns and lake morphology" @default.
- W3163688810 cites W1184087184 @default.
- W3163688810 cites W1977168270 @default.
- W3163688810 cites W1993615867 @default.
- W3163688810 cites W2032721835 @default.
- W3163688810 cites W2043491182 @default.
- W3163688810 cites W2053104210 @default.
- W3163688810 cites W2058730781 @default.
- W3163688810 cites W2071147315 @default.
- W3163688810 cites W2076214342 @default.
- W3163688810 cites W2081395877 @default.
- W3163688810 cites W2128089700 @default.
- W3163688810 cites W2134658825 @default.
- W3163688810 cites W2138631674 @default.
- W3163688810 cites W2150761052 @default.
- W3163688810 cites W2549744384 @default.
- W3163688810 cites W2561786549 @default.
- W3163688810 cites W2563809466 @default.
- W3163688810 cites W2596095418 @default.
- W3163688810 cites W2619302122 @default.
- W3163688810 cites W2734593918 @default.
- W3163688810 cites W2762116378 @default.
- W3163688810 cites W2799832922 @default.
- W3163688810 cites W2901000659 @default.
- W3163688810 cites W2913144944 @default.
- W3163688810 cites W2923550063 @default.
- W3163688810 cites W2928111452 @default.
- W3163688810 cites W2945077162 @default.
- W3163688810 cites W2991278987 @default.
- W3163688810 cites W2999836034 @default.
- W3163688810 cites W3016656973 @default.
- W3163688810 cites W3020894609 @default.
- W3163688810 cites W3026054639 @default.
- W3163688810 cites W3092150140 @default.
- W3163688810 cites W3120074694 @default.
- W3163688810 cites W3136223111 @default.
- W3163688810 doi "https://doi.org/10.1016/j.watres.2021.117235" @default.
- W3163688810 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34034101" @default.
- W3163688810 hasPublicationYear "2021" @default.
- W3163688810 type Work @default.
- W3163688810 sameAs 3163688810 @default.
- W3163688810 citedByCount "37" @default.
- W3163688810 countsByYear W31636888102021 @default.
- W3163688810 countsByYear W31636888102022 @default.
- W3163688810 countsByYear W31636888102023 @default.
- W3163688810 crossrefType "journal-article" @default.
- W3163688810 hasAuthorship W3163688810A5006173478 @default.
- W3163688810 hasAuthorship W3163688810A5024040305 @default.
- W3163688810 hasAuthorship W3163688810A5034762188 @default.
- W3163688810 hasAuthorship W3163688810A5039545694 @default.
- W3163688810 hasAuthorship W3163688810A5044757881 @default.
- W3163688810 hasAuthorship W3163688810A5047004727 @default.
- W3163688810 hasAuthorship W3163688810A5049665582 @default.
- W3163688810 hasAuthorship W3163688810A5052224183 @default.
- W3163688810 hasAuthorship W3163688810A5058516723 @default.
- W3163688810 hasAuthorship W3163688810A5059996487 @default.
- W3163688810 hasAuthorship W3163688810A5071130710 @default.
- W3163688810 hasAuthorship W3163688810A5080429578 @default.
- W3163688810 hasAuthorship W3163688810A5081615670 @default.
- W3163688810 hasConcept C108469399 @default.
- W3163688810 hasConcept C115540264 @default.
- W3163688810 hasConcept C119857082 @default.
- W3163688810 hasConcept C127313418 @default.
- W3163688810 hasConcept C142796444 @default.
- W3163688810 hasConcept C150547873 @default.
- W3163688810 hasConcept C187320778 @default.
- W3163688810 hasConcept C18903297 @default.
- W3163688810 hasConcept C2780797713 @default.
- W3163688810 hasConcept C2780892065 @default.
- W3163688810 hasConcept C39432304 @default.
- W3163688810 hasConcept C41008148 @default.
- W3163688810 hasConcept C76886044 @default.
- W3163688810 hasConcept C86803240 @default.
- W3163688810 hasConceptScore W3163688810C108469399 @default.
- W3163688810 hasConceptScore W3163688810C115540264 @default.
- W3163688810 hasConceptScore W3163688810C119857082 @default.
- W3163688810 hasConceptScore W3163688810C127313418 @default.
- W3163688810 hasConceptScore W3163688810C142796444 @default.
- W3163688810 hasConceptScore W3163688810C150547873 @default.
- W3163688810 hasConceptScore W3163688810C187320778 @default.
- W3163688810 hasConceptScore W3163688810C18903297 @default.