Matches in SemOpenAlex for { <https://semopenalex.org/work/W3163720131> ?p ?o ?g. }
- W3163720131 endingPage "108158" @default.
- W3163720131 startingPage "108158" @default.
- W3163720131 abstract "Remote sensing can be used for precision nutrient management to assess plant nitrogen (N) status in a spatially detailed and real-time manner. Despite recent advances in satellite- and drone technology and machine learning, neither differences between platforms nor methodological aspects for estimating plant N status have been sufficiently investigated. In this study, multispectral data obtained by ground (handheld Rapidscan), air- (unmanned aerial vehicle, UAV) and spaceborne (Sentinel-2) platforms were exploited to estimate plant N uptake (PNU), concentration (PNC) and N nutrition index (NNI). The test plant was potato grown for three years on a sandy soil in Denmark and the analysis was based on the critical N dilution curve. Parametric (PR) and non-parametric (random forest, RFR) regressions were conducted and compared in predicting mid-season PNU, PNC and NNI from band reflectances or vegetation indices (VIs) derived from each platform data. The results obtained by the UAV data had the highest accuracy, largely due to the fine spatial resolution. For both regression types, PNU and NNI correlated better than PNC to reflectance data. For the UAV data, validation Nash-Sutcliffe model efficiency (NSE) of PNU and NNI ranged between 0.64–0.95 and 0.41–0.92 respectively, with corresponding values for relative root mean square error (RRMSE) of 7.1–22% and 5.86–22%. The lower end of NSE and higher end RRMSE intervals systematically being from the PR, which demonstrates the robustness and the high accuracy of RFR in predicting plant N status. The other platforms resulted in acceptable results, with validation NSE and RRMSE for PNU and NNI of, respectively, 0.60–0.79 and 14–20%, 0.25–0.79 and 10–17% for Rapidscan, and 0.48–0.83 and 17–28%, 0.42–0.82 and 12–19% for Sentinel-2. The band reflectance and the VIs were equally suited as input predictors for the RFR algorithm. The N requirement calculated from all three datasets reflected the field observations well. The study reveals the potential of different regression methods for detailed spatial estimation of plant N status to guide in-season fertilization by matching the plant growth demands, emphasizing the strengths of the RFR. The procedure is helpful for the digital agriculture and the smart farming industry aiming to avoid excess application of N." @default.
- W3163720131 created "2021-05-24" @default.
- W3163720131 creator A5025987927 @default.
- W3163720131 creator A5034849518 @default.
- W3163720131 creator A5067865693 @default.
- W3163720131 creator A5067882301 @default.
- W3163720131 creator A5084768463 @default.
- W3163720131 date "2021-07-01" @default.
- W3163720131 modified "2023-10-17" @default.
- W3163720131 title "Random forest regression results in accurate assessment of potato nitrogen status based on multispectral data from different platforms and the critical concentration approach" @default.
- W3163720131 cites W1871833115 @default.
- W3163720131 cites W1876282212 @default.
- W3163720131 cites W1965696795 @default.
- W3163720131 cites W1965817681 @default.
- W3163720131 cites W1978815957 @default.
- W3163720131 cites W1988515463 @default.
- W3163720131 cites W1988707929 @default.
- W3163720131 cites W1992800802 @default.
- W3163720131 cites W2003835955 @default.
- W3163720131 cites W2004526634 @default.
- W3163720131 cites W2012686349 @default.
- W3163720131 cites W2014042498 @default.
- W3163720131 cites W2016360448 @default.
- W3163720131 cites W2021309273 @default.
- W3163720131 cites W2038023217 @default.
- W3163720131 cites W2045102154 @default.
- W3163720131 cites W2058312673 @default.
- W3163720131 cites W2076532457 @default.
- W3163720131 cites W2081734510 @default.
- W3163720131 cites W2081768792 @default.
- W3163720131 cites W2085915879 @default.
- W3163720131 cites W2094914511 @default.
- W3163720131 cites W2095939249 @default.
- W3163720131 cites W2098653311 @default.
- W3163720131 cites W2108711704 @default.
- W3163720131 cites W2111443246 @default.
- W3163720131 cites W2111947859 @default.
- W3163720131 cites W2113242816 @default.
- W3163720131 cites W2123603926 @default.
- W3163720131 cites W2138499468 @default.
- W3163720131 cites W2145994233 @default.
- W3163720131 cites W2159961845 @default.
- W3163720131 cites W2161815745 @default.
- W3163720131 cites W2163410149 @default.
- W3163720131 cites W2173333326 @default.
- W3163720131 cites W2181739994 @default.
- W3163720131 cites W2261059368 @default.
- W3163720131 cites W2288674976 @default.
- W3163720131 cites W2295018574 @default.
- W3163720131 cites W2312925517 @default.
- W3163720131 cites W2317360817 @default.
- W3163720131 cites W2323511679 @default.
- W3163720131 cites W2326201341 @default.
- W3163720131 cites W2482896198 @default.
- W3163720131 cites W2521499676 @default.
- W3163720131 cites W2532352012 @default.
- W3163720131 cites W2561146901 @default.
- W3163720131 cites W2595044712 @default.
- W3163720131 cites W2599469288 @default.
- W3163720131 cites W2606176566 @default.
- W3163720131 cites W2609044008 @default.
- W3163720131 cites W2772101526 @default.
- W3163720131 cites W2790197537 @default.
- W3163720131 cites W2793322215 @default.
- W3163720131 cites W2804971462 @default.
- W3163720131 cites W2808245662 @default.
- W3163720131 cites W2900553983 @default.
- W3163720131 cites W2911964244 @default.
- W3163720131 cites W2963235971 @default.
- W3163720131 cites W2972801870 @default.
- W3163720131 cites W2997093722 @default.
- W3163720131 cites W3000369451 @default.
- W3163720131 cites W3037079185 @default.
- W3163720131 cites W3082960107 @default.
- W3163720131 cites W9877555 @default.
- W3163720131 doi "https://doi.org/10.1016/j.fcr.2021.108158" @default.
- W3163720131 hasPublicationYear "2021" @default.
- W3163720131 type Work @default.
- W3163720131 sameAs 3163720131 @default.
- W3163720131 citedByCount "22" @default.
- W3163720131 countsByYear W31637201312021 @default.
- W3163720131 countsByYear W31637201312022 @default.
- W3163720131 countsByYear W31637201312023 @default.
- W3163720131 crossrefType "journal-article" @default.
- W3163720131 hasAuthorship W3163720131A5025987927 @default.
- W3163720131 hasAuthorship W3163720131A5034849518 @default.
- W3163720131 hasAuthorship W3163720131A5067865693 @default.
- W3163720131 hasAuthorship W3163720131A5067882301 @default.
- W3163720131 hasAuthorship W3163720131A5084768463 @default.
- W3163720131 hasConcept C104541649 @default.
- W3163720131 hasConcept C105795698 @default.
- W3163720131 hasConcept C117251300 @default.
- W3163720131 hasConcept C139945424 @default.
- W3163720131 hasConcept C152877465 @default.
- W3163720131 hasConcept C154945302 @default.
- W3163720131 hasConcept C169258074 @default.
- W3163720131 hasConcept C173163844 @default.
- W3163720131 hasConcept C205649164 @default.