Matches in SemOpenAlex for { <https://semopenalex.org/work/W3163737299> ?p ?o ?g. }
- W3163737299 endingPage "624" @default.
- W3163737299 startingPage "604" @default.
- W3163737299 abstract "To assess the potential of machine learning to predict low and high treatment demand in real life in patients with neovascular age-related macular degeneration (nAMD), retinal vein occlusion (RVO), and diabetic macular edema (DME) treated according to a treat-and-extend regimen (TER).Retrospective cohort study.Three hundred seventy-seven eyes (340 patients) with nAMD and 333 eyes (285 patients) with RVO or DME treated with anti-vascular endothelial growth factor agents (VEGF) according to a predefined TER from 2014 through 2018.Eyes were grouped by disease into low, moderate, and high treatment demands, defined by the average treatment interval (low, ≥10 weeks; high, ≤5 weeks; moderate, remaining eyes). Two random forest models were trained to predict the probability of the long-term treatment demand of a new patient. Both models use morphological features automatically extracted from the OCT volumes at baseline and after 2 consecutive visits, as well as patient demographic information. Evaluation of the models included a 10-fold cross-validation ensuring that no patient was present in both the training set (nAMD, approximately 339; RVO and DME, approximately 300) and test set (nAMD, approximately 38; RVO and DME, approximately 33).Mean area under the receiver operating characteristic curve (AUC) of both models; contribution to the prediction and statistical significance of the input features.Based on the first 3 visits, it was possible to predict low and high treatment demand in nAMD eyes and in RVO and DME eyes with similar accuracy. The distribution of low, high, and moderate demanders was 127, 42, and 208, respectively, for nAMD and 61, 50, and 222, respectively, for RVO and DME. The nAMD-trained models yielded mean AUCs of 0.79 and 0.79 over the 10-fold crossovers for low and high demand, respectively. Models for RVO and DME showed similar results, with a mean AUC of 0.76 and 0.78 for low and high demand, respectively. Even more importantly, this study revealed that it is possible to predict low demand reasonably well at the first visit, before the first injection.Machine learning classifiers can predict treatment demand and may assist in establishing patient-specific treatment plans in the near future." @default.
- W3163737299 created "2021-05-24" @default.
- W3163737299 creator A5001723125 @default.
- W3163737299 creator A5015339066 @default.
- W3163737299 creator A5020042244 @default.
- W3163737299 creator A5030061023 @default.
- W3163737299 creator A5030612595 @default.
- W3163737299 creator A5073304108 @default.
- W3163737299 creator A5083445640 @default.
- W3163737299 creator A5087429191 @default.
- W3163737299 creator A5089886529 @default.
- W3163737299 date "2021-07-01" @default.
- W3163737299 modified "2023-10-18" @default.
- W3163737299 title "Machine Learning Can Predict Anti–VEGF Treatment Demand in a Treat-and-Extend Regimen for Patients with Neovascular AMD, DME, and RVO Associated Macular Edema" @default.
- W3163737299 cites W1458919156 @default.
- W3163737299 cites W1782061354 @default.
- W3163737299 cites W1983719534 @default.
- W3163737299 cites W2004117352 @default.
- W3163737299 cites W2030890379 @default.
- W3163737299 cites W2102463203 @default.
- W3163737299 cites W2107688758 @default.
- W3163737299 cites W2117912048 @default.
- W3163737299 cites W2135936686 @default.
- W3163737299 cites W2171962482 @default.
- W3163737299 cites W2172223254 @default.
- W3163737299 cites W2316418129 @default.
- W3163737299 cites W2319244950 @default.
- W3163737299 cites W2346873848 @default.
- W3163737299 cites W2524865039 @default.
- W3163737299 cites W2528107067 @default.
- W3163737299 cites W2531185339 @default.
- W3163737299 cites W2605582789 @default.
- W3163737299 cites W2624730555 @default.
- W3163737299 cites W2734118236 @default.
- W3163737299 cites W2756485327 @default.
- W3163737299 cites W2767559559 @default.
- W3163737299 cites W2767736688 @default.
- W3163737299 cites W2781485997 @default.
- W3163737299 cites W2785047143 @default.
- W3163737299 cites W2891202827 @default.
- W3163737299 cites W2910665096 @default.
- W3163737299 cites W2911722047 @default.
- W3163737299 cites W2911964244 @default.
- W3163737299 cites W2919070891 @default.
- W3163737299 cites W2931710213 @default.
- W3163737299 cites W2965769306 @default.
- W3163737299 cites W2974131077 @default.
- W3163737299 cites W2997658850 @default.
- W3163737299 cites W2997721736 @default.
- W3163737299 cites W3087170266 @default.
- W3163737299 cites W3112433314 @default.
- W3163737299 cites W3126975289 @default.
- W3163737299 doi "https://doi.org/10.1016/j.oret.2021.05.002" @default.
- W3163737299 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33971352" @default.
- W3163737299 hasPublicationYear "2021" @default.
- W3163737299 type Work @default.
- W3163737299 sameAs 3163737299 @default.
- W3163737299 citedByCount "17" @default.
- W3163737299 countsByYear W31637372992021 @default.
- W3163737299 countsByYear W31637372992022 @default.
- W3163737299 countsByYear W31637372992023 @default.
- W3163737299 crossrefType "journal-article" @default.
- W3163737299 hasAuthorship W3163737299A5001723125 @default.
- W3163737299 hasAuthorship W3163737299A5015339066 @default.
- W3163737299 hasAuthorship W3163737299A5020042244 @default.
- W3163737299 hasAuthorship W3163737299A5030061023 @default.
- W3163737299 hasAuthorship W3163737299A5030612595 @default.
- W3163737299 hasAuthorship W3163737299A5073304108 @default.
- W3163737299 hasAuthorship W3163737299A5083445640 @default.
- W3163737299 hasAuthorship W3163737299A5087429191 @default.
- W3163737299 hasAuthorship W3163737299A5089886529 @default.
- W3163737299 hasBestOaLocation W31637372991 @default.
- W3163737299 hasConcept C118487528 @default.
- W3163737299 hasConcept C126322002 @default.
- W3163737299 hasConcept C134018914 @default.
- W3163737299 hasConcept C141071460 @default.
- W3163737299 hasConcept C167135981 @default.
- W3163737299 hasConcept C2776268601 @default.
- W3163737299 hasConcept C2776403814 @default.
- W3163737299 hasConcept C2776694085 @default.
- W3163737299 hasConcept C2777802072 @default.
- W3163737299 hasConcept C2779829184 @default.
- W3163737299 hasConcept C2780347916 @default.
- W3163737299 hasConcept C2780827179 @default.
- W3163737299 hasConcept C2781100027 @default.
- W3163737299 hasConcept C2781413609 @default.
- W3163737299 hasConcept C2908732032 @default.
- W3163737299 hasConcept C44249647 @default.
- W3163737299 hasConcept C555293320 @default.
- W3163737299 hasConcept C58471807 @default.
- W3163737299 hasConcept C71924100 @default.
- W3163737299 hasConceptScore W3163737299C118487528 @default.
- W3163737299 hasConceptScore W3163737299C126322002 @default.
- W3163737299 hasConceptScore W3163737299C134018914 @default.
- W3163737299 hasConceptScore W3163737299C141071460 @default.
- W3163737299 hasConceptScore W3163737299C167135981 @default.
- W3163737299 hasConceptScore W3163737299C2776268601 @default.
- W3163737299 hasConceptScore W3163737299C2776403814 @default.