Matches in SemOpenAlex for { <https://semopenalex.org/work/W3163741274> ?p ?o ?g. }
- W3163741274 endingPage "10" @default.
- W3163741274 startingPage "1" @default.
- W3163741274 abstract "Extracting the relations between medical concepts is very valuable in the medical domain. Scientists need to extract relevant information and semantic relations between medical concepts, including protein and protein, gene and protein, drug and drug, and drug and disease. These relations can be extracted from biomedical literature available on various databases. This study examines the extraction of semantic relations that can occur between diseases and drugs. Findings will help specialists make good decisions when administering a medication to a patient and will allow them to continuously be up to date in their field. The objective of this work is to identify different features related to drugs and diseases from medical texts by applying Natural Language Processing (NLP) techniques and UMLS ontology. The Support Vector Machine classifier uses these features to extract valuable semantic relationships among text entities. The contributing factor of this research is the combination of the strength of a suggested NLP technique, which takes advantage of UMLS ontology and enables the extraction of correct and adequate features (frequency features, lexical features, morphological features, syntactic features, and semantic features), and Support Vector Machines with polynomial kernel function. These features are manipulated to pinpoint the relations between drug and disease. The proposed approach was evaluated using a standard corpus extracted from MEDLINE. The finding considerably improves the performance and outperforms similar works, especially the f-score for the most important relation “cure,” which is equal to 98.19%. The accuracy percentage is better than those in all the existing works for all the relations." @default.
- W3163741274 created "2021-05-24" @default.
- W3163741274 creator A5011876341 @default.
- W3163741274 creator A5017566136 @default.
- W3163741274 creator A5071625361 @default.
- W3163741274 date "2021-05-19" @default.
- W3163741274 modified "2023-09-23" @default.
- W3163741274 title "Drug Disease Relation Extraction from Biomedical Literature Using NLP and Machine Learning" @default.
- W3163741274 cites W1518020032 @default.
- W3163741274 cites W1601564520 @default.
- W3163741274 cites W1610821757 @default.
- W3163741274 cites W1791453308 @default.
- W3163741274 cites W190884861 @default.
- W3163741274 cites W1966277141 @default.
- W3163741274 cites W1966615318 @default.
- W3163741274 cites W2002046531 @default.
- W3163741274 cites W2007739294 @default.
- W3163741274 cites W2046747418 @default.
- W3163741274 cites W2098679902 @default.
- W3163741274 cites W2110279753 @default.
- W3163741274 cites W2133601033 @default.
- W3163741274 cites W2136437513 @default.
- W3163741274 cites W2142407957 @default.
- W3163741274 cites W2195753191 @default.
- W3163741274 cites W2560748602 @default.
- W3163741274 cites W2623520931 @default.
- W3163741274 cites W2770339797 @default.
- W3163741274 cites W2784118615 @default.
- W3163741274 cites W2794764013 @default.
- W3163741274 cites W2795129839 @default.
- W3163741274 cites W2884668708 @default.
- W3163741274 cites W2904726360 @default.
- W3163741274 cites W2912324667 @default.
- W3163741274 cites W2914408883 @default.
- W3163741274 cites W2919939141 @default.
- W3163741274 cites W2951101345 @default.
- W3163741274 cites W2955355830 @default.
- W3163741274 cites W2963826396 @default.
- W3163741274 cites W2983345511 @default.
- W3163741274 cites W2987639113 @default.
- W3163741274 cites W3011020391 @default.
- W3163741274 cites W3025257690 @default.
- W3163741274 cites W3027982260 @default.
- W3163741274 cites W3080945644 @default.
- W3163741274 cites W4239148722 @default.
- W3163741274 doi "https://doi.org/10.1155/2021/9958410" @default.
- W3163741274 hasPublicationYear "2021" @default.
- W3163741274 type Work @default.
- W3163741274 sameAs 3163741274 @default.
- W3163741274 citedByCount "6" @default.
- W3163741274 countsByYear W31637412742022 @default.
- W3163741274 countsByYear W31637412742023 @default.
- W3163741274 crossrefType "journal-article" @default.
- W3163741274 hasAuthorship W3163741274A5011876341 @default.
- W3163741274 hasAuthorship W3163741274A5017566136 @default.
- W3163741274 hasAuthorship W3163741274A5071625361 @default.
- W3163741274 hasBestOaLocation W31637412741 @default.
- W3163741274 hasConcept C111472728 @default.
- W3163741274 hasConcept C119857082 @default.
- W3163741274 hasConcept C12267149 @default.
- W3163741274 hasConcept C124101348 @default.
- W3163741274 hasConcept C138885662 @default.
- W3163741274 hasConcept C153604712 @default.
- W3163741274 hasConcept C154945302 @default.
- W3163741274 hasConcept C165141518 @default.
- W3163741274 hasConcept C195807954 @default.
- W3163741274 hasConcept C202444582 @default.
- W3163741274 hasConcept C204321447 @default.
- W3163741274 hasConcept C23123220 @default.
- W3163741274 hasConcept C25343380 @default.
- W3163741274 hasConcept C25810664 @default.
- W3163741274 hasConcept C33923547 @default.
- W3163741274 hasConcept C41008148 @default.
- W3163741274 hasConcept C69505689 @default.
- W3163741274 hasConcept C71472368 @default.
- W3163741274 hasConcept C95623464 @default.
- W3163741274 hasConcept C9652623 @default.
- W3163741274 hasConceptScore W3163741274C111472728 @default.
- W3163741274 hasConceptScore W3163741274C119857082 @default.
- W3163741274 hasConceptScore W3163741274C12267149 @default.
- W3163741274 hasConceptScore W3163741274C124101348 @default.
- W3163741274 hasConceptScore W3163741274C138885662 @default.
- W3163741274 hasConceptScore W3163741274C153604712 @default.
- W3163741274 hasConceptScore W3163741274C154945302 @default.
- W3163741274 hasConceptScore W3163741274C165141518 @default.
- W3163741274 hasConceptScore W3163741274C195807954 @default.
- W3163741274 hasConceptScore W3163741274C202444582 @default.
- W3163741274 hasConceptScore W3163741274C204321447 @default.
- W3163741274 hasConceptScore W3163741274C23123220 @default.
- W3163741274 hasConceptScore W3163741274C25343380 @default.
- W3163741274 hasConceptScore W3163741274C25810664 @default.
- W3163741274 hasConceptScore W3163741274C33923547 @default.
- W3163741274 hasConceptScore W3163741274C41008148 @default.
- W3163741274 hasConceptScore W3163741274C69505689 @default.
- W3163741274 hasConceptScore W3163741274C71472368 @default.
- W3163741274 hasConceptScore W3163741274C95623464 @default.
- W3163741274 hasConceptScore W3163741274C9652623 @default.
- W3163741274 hasFunder F4320323722 @default.