Matches in SemOpenAlex for { <https://semopenalex.org/work/W3163802783> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W3163802783 endingPage "126" @default.
- W3163802783 startingPage "121" @default.
- W3163802783 abstract "To evaluate the feasibility of High-resolution (HR) magnetic resonance imaging (MRI) of the liver using deep learning reconstruction (DLR) based on a deep learning denoising technique compared with standard-resolution (SR) imaging. This retrospective study included patients who underwent abdominal MRI including both HR imaging using DLR and SR imaging between April 1 and August 31, 2019. DLR was applied to all HR images using 12 different strength levels of noise reduction to determine the optimal denoised level for HR images. The mean signal-to-noise ratio (SNR) was then compared between the original HR images without DLR and the optimal denoised HR images with DLR and SR images. The mean image noise, sharpness and overall image quality were also compared. Statistical analyses were performed with the Friedman and Dunn-Bonferroni post-hoc test. In total, 49 patients were analyzed (median age, 71 years; 25 women). In quantitative analysis, the mean SNRs on the original HR images without DLR were significantly lower than those on the SR images in all sequences (p < 0.01). Conversely, the mean SNRs on optimal denoised HR images were significantly higher than those on the SR images in all sequences (p < 0.01). In the qualitative analysis, the mean scores for the image noise and overall image quality were significantly higher on optimal denoised HR images than on the SR images in all sequences (p < 0.01) except for the mean image noise score in in-phase (IP) images. The use of a deep learning-based noise reduction technique substantially and successfully improved the SNR and image quality in HR imaging of the liver. Denoised HR imaging using the DLR technique appears feasible for use in liver MR examinations compared with SR imaging." @default.
- W3163802783 created "2021-05-24" @default.
- W3163802783 creator A5003995850 @default.
- W3163802783 creator A5007251351 @default.
- W3163802783 creator A5021538074 @default.
- W3163802783 creator A5031556560 @default.
- W3163802783 creator A5046894215 @default.
- W3163802783 creator A5063554725 @default.
- W3163802783 creator A5069839872 @default.
- W3163802783 creator A5072909990 @default.
- W3163802783 creator A5083114149 @default.
- W3163802783 date "2021-07-01" @default.
- W3163802783 modified "2023-10-17" @default.
- W3163802783 title "Feasibility of high-resolution magnetic resonance imaging of the liver using deep learning reconstruction based on the deep learning denoising technique" @default.
- W3163802783 cites W1968132399 @default.
- W3163802783 cites W1995462091 @default.
- W3163802783 cites W2003021294 @default.
- W3163802783 cites W2012097779 @default.
- W3163802783 cites W2055161014 @default.
- W3163802783 cites W2508457857 @default.
- W3163802783 cites W2777741489 @default.
- W3163802783 cites W2963120722 @default.
- W3163802783 cites W2971983564 @default.
- W3163802783 cites W3008231609 @default.
- W3163802783 cites W3108906604 @default.
- W3163802783 doi "https://doi.org/10.1016/j.mri.2021.05.001" @default.
- W3163802783 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33971240" @default.
- W3163802783 hasPublicationYear "2021" @default.
- W3163802783 type Work @default.
- W3163802783 sameAs 3163802783 @default.
- W3163802783 citedByCount "8" @default.
- W3163802783 countsByYear W31638027832021 @default.
- W3163802783 countsByYear W31638027832022 @default.
- W3163802783 countsByYear W31638027832023 @default.
- W3163802783 crossrefType "journal-article" @default.
- W3163802783 hasAuthorship W3163802783A5003995850 @default.
- W3163802783 hasAuthorship W3163802783A5007251351 @default.
- W3163802783 hasAuthorship W3163802783A5021538074 @default.
- W3163802783 hasAuthorship W3163802783A5031556560 @default.
- W3163802783 hasAuthorship W3163802783A5046894215 @default.
- W3163802783 hasAuthorship W3163802783A5063554725 @default.
- W3163802783 hasAuthorship W3163802783A5069839872 @default.
- W3163802783 hasAuthorship W3163802783A5072909990 @default.
- W3163802783 hasAuthorship W3163802783A5083114149 @default.
- W3163802783 hasConcept C108583219 @default.
- W3163802783 hasConcept C115961682 @default.
- W3163802783 hasConcept C126838900 @default.
- W3163802783 hasConcept C13944312 @default.
- W3163802783 hasConcept C141379421 @default.
- W3163802783 hasConcept C143409427 @default.
- W3163802783 hasConcept C153180895 @default.
- W3163802783 hasConcept C154945302 @default.
- W3163802783 hasConcept C163294075 @default.
- W3163802783 hasConcept C205372480 @default.
- W3163802783 hasConcept C2989005 @default.
- W3163802783 hasConcept C41008148 @default.
- W3163802783 hasConcept C55020928 @default.
- W3163802783 hasConcept C71924100 @default.
- W3163802783 hasConcept C76155785 @default.
- W3163802783 hasConcept C99498987 @default.
- W3163802783 hasConceptScore W3163802783C108583219 @default.
- W3163802783 hasConceptScore W3163802783C115961682 @default.
- W3163802783 hasConceptScore W3163802783C126838900 @default.
- W3163802783 hasConceptScore W3163802783C13944312 @default.
- W3163802783 hasConceptScore W3163802783C141379421 @default.
- W3163802783 hasConceptScore W3163802783C143409427 @default.
- W3163802783 hasConceptScore W3163802783C153180895 @default.
- W3163802783 hasConceptScore W3163802783C154945302 @default.
- W3163802783 hasConceptScore W3163802783C163294075 @default.
- W3163802783 hasConceptScore W3163802783C205372480 @default.
- W3163802783 hasConceptScore W3163802783C2989005 @default.
- W3163802783 hasConceptScore W3163802783C41008148 @default.
- W3163802783 hasConceptScore W3163802783C55020928 @default.
- W3163802783 hasConceptScore W3163802783C71924100 @default.
- W3163802783 hasConceptScore W3163802783C76155785 @default.
- W3163802783 hasConceptScore W3163802783C99498987 @default.
- W3163802783 hasLocation W31638027831 @default.
- W3163802783 hasOpenAccess W3163802783 @default.
- W3163802783 hasPrimaryLocation W31638027831 @default.
- W3163802783 hasRelatedWork W1963814553 @default.
- W3163802783 hasRelatedWork W1988158806 @default.
- W3163802783 hasRelatedWork W2005223122 @default.
- W3163802783 hasRelatedWork W2018015402 @default.
- W3163802783 hasRelatedWork W2037595954 @default.
- W3163802783 hasRelatedWork W2386146599 @default.
- W3163802783 hasRelatedWork W2507293823 @default.
- W3163802783 hasRelatedWork W2757389719 @default.
- W3163802783 hasRelatedWork W2813032510 @default.
- W3163802783 hasRelatedWork W2951714568 @default.
- W3163802783 hasVolume "80" @default.
- W3163802783 isParatext "false" @default.
- W3163802783 isRetracted "false" @default.
- W3163802783 magId "3163802783" @default.
- W3163802783 workType "article" @default.