Matches in SemOpenAlex for { <https://semopenalex.org/work/W3163921902> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W3163921902 endingPage "102709" @default.
- W3163921902 startingPage "102709" @default.
- W3163921902 abstract "Activity recognition of construction equipment is vital for operational productivity and safety analysis. For automated equipment monitoring, many researchers have developed kinematic or visual sensing approaches and found that the two approaches have their own technical advantages and disadvantages in classifying different types of equipment activities. However, since previous methods adopted only one of kinematic or visual sensing, there is a limitation to fully benefit from both approaches, causing difficulty in monitoring construction equipment precisely. Additionally, despite the great potential of data fusion, the hybrid effects of kinematic–visual sensing are still unclear. To fill such knowledge gaps, this study developed a hybrid kinematic–visual sensing approach and investigated its impacts on the recognition of equipment activities. Specifically, a smartphone was installed inside the equipment's cabin, and kinematic and visual data were collected from its built-in sensors, gyroscopes, accelerometers, and cameras. Total 60-min data were collected, and the data were further split into training (40-min) and testing data (20-min). The data were then used to experiment three different models: kinematic, visual, and hybrid models. In the experiments, the average F-score of the hybrid model was 77.4%, whereas those of kinematic and visual models were 61.7% and 72.4%, respectively. These results indicated that the hybrid sensing could improve the recognition performance and monitor construction equipment better than relying only on sole type of data sources. The findings can contribute to more reliable activity recognition and operation analysis of construction equipment, and provide meaningful insights for future research. • This study developed a deep learning-based hybrid model for activity recognition of construction equipment. • The hybrid effects of kinematic–visual sensing were investigated by quantitative analysis. • The hybrid kinematic–visual sensing significantly improved the performance of activity recognition. • The findings can contribute to automated equipment monitoring and operation analyses." @default.
- W3163921902 created "2021-05-24" @default.
- W3163921902 creator A5068272420 @default.
- W3163921902 creator A5072157215 @default.
- W3163921902 creator A5084121817 @default.
- W3163921902 date "2021-12-01" @default.
- W3163921902 modified "2023-10-16" @default.
- W3163921902 title "Hybrid kinematic–visual sensing approach for activity recognition of construction equipment" @default.
- W3163921902 cites W1964598692 @default.
- W3163921902 cites W1972905242 @default.
- W3163921902 cites W1983902753 @default.
- W3163921902 cites W1998994572 @default.
- W3163921902 cites W2002844166 @default.
- W3163921902 cites W2014840998 @default.
- W3163921902 cites W2036695573 @default.
- W3163921902 cites W2038944326 @default.
- W3163921902 cites W2044772156 @default.
- W3163921902 cites W2082459479 @default.
- W3163921902 cites W2097590915 @default.
- W3163921902 cites W2111361244 @default.
- W3163921902 cites W2117409414 @default.
- W3163921902 cites W2144560128 @default.
- W3163921902 cites W2148143831 @default.
- W3163921902 cites W2507244352 @default.
- W3163921902 cites W2508429489 @default.
- W3163921902 cites W2527432647 @default.
- W3163921902 cites W2599181565 @default.
- W3163921902 cites W2614732498 @default.
- W3163921902 cites W2781682874 @default.
- W3163921902 cites W2782274301 @default.
- W3163921902 cites W2803862859 @default.
- W3163921902 cites W2877813818 @default.
- W3163921902 cites W2884022949 @default.
- W3163921902 cites W2885381467 @default.
- W3163921902 cites W2914228440 @default.
- W3163921902 cites W2942937015 @default.
- W3163921902 cites W2944580944 @default.
- W3163921902 cites W2954350473 @default.
- W3163921902 cites W2977512643 @default.
- W3163921902 cites W2999291394 @default.
- W3163921902 cites W3015666110 @default.
- W3163921902 cites W3022198924 @default.
- W3163921902 cites W3043459142 @default.
- W3163921902 cites W3109512597 @default.
- W3163921902 doi "https://doi.org/10.1016/j.jobe.2021.102709" @default.
- W3163921902 hasPublicationYear "2021" @default.
- W3163921902 type Work @default.
- W3163921902 sameAs 3163921902 @default.
- W3163921902 citedByCount "8" @default.
- W3163921902 countsByYear W31639219022022 @default.
- W3163921902 countsByYear W31639219022023 @default.
- W3163921902 crossrefType "journal-article" @default.
- W3163921902 hasAuthorship W3163921902A5068272420 @default.
- W3163921902 hasAuthorship W3163921902A5072157215 @default.
- W3163921902 hasAuthorship W3163921902A5084121817 @default.
- W3163921902 hasBestOaLocation W31639219021 @default.
- W3163921902 hasConcept C107457646 @default.
- W3163921902 hasConcept C121332964 @default.
- W3163921902 hasConcept C127413603 @default.
- W3163921902 hasConcept C154945302 @default.
- W3163921902 hasConcept C31972630 @default.
- W3163921902 hasConcept C39920418 @default.
- W3163921902 hasConcept C41008148 @default.
- W3163921902 hasConcept C74650414 @default.
- W3163921902 hasConceptScore W3163921902C107457646 @default.
- W3163921902 hasConceptScore W3163921902C121332964 @default.
- W3163921902 hasConceptScore W3163921902C127413603 @default.
- W3163921902 hasConceptScore W3163921902C154945302 @default.
- W3163921902 hasConceptScore W3163921902C31972630 @default.
- W3163921902 hasConceptScore W3163921902C39920418 @default.
- W3163921902 hasConceptScore W3163921902C41008148 @default.
- W3163921902 hasConceptScore W3163921902C74650414 @default.
- W3163921902 hasFunder F4320322010 @default.
- W3163921902 hasFunder F4320324625 @default.
- W3163921902 hasLocation W31639219021 @default.
- W3163921902 hasOpenAccess W3163921902 @default.
- W3163921902 hasPrimaryLocation W31639219021 @default.
- W3163921902 hasRelatedWork W1891287906 @default.
- W3163921902 hasRelatedWork W1969923398 @default.
- W3163921902 hasRelatedWork W2036807459 @default.
- W3163921902 hasRelatedWork W2058170566 @default.
- W3163921902 hasRelatedWork W2166024367 @default.
- W3163921902 hasRelatedWork W2229312674 @default.
- W3163921902 hasRelatedWork W2755342338 @default.
- W3163921902 hasRelatedWork W2772917594 @default.
- W3163921902 hasRelatedWork W2775347418 @default.
- W3163921902 hasRelatedWork W3116076068 @default.
- W3163921902 hasVolume "44" @default.
- W3163921902 isParatext "false" @default.
- W3163921902 isRetracted "false" @default.
- W3163921902 magId "3163921902" @default.
- W3163921902 workType "article" @default.