Matches in SemOpenAlex for { <https://semopenalex.org/work/W3163928181> ?p ?o ?g. }
- W3163928181 endingPage "79399" @default.
- W3163928181 startingPage "79389" @default.
- W3163928181 abstract "In many computer vision applications, one image can be represented by multiple heterogeneous features from different views, most of them commonly locate in high-dimensional space. These features can reflect different characteristics of one same object, they contain compatible and complementary information among each other. How to construct an uniform low-dimensional embedding features which represent useful information of multi-view features is still an important and urgent issue to be solved. Therefore, we propose a multi-view fusion method via tensor learning and gradient descent (MvF-TG) in this paper. MvF-TG reconstructs a lowdimensional mapping subspace of each object by utilizing its k nearest neighbors, which preserves the underlying neighborhood structure of the original local manifold. The new method can effectively exploit the spatial correlation information from the multi-view features by tensor learning. Furthermore, the method constructs a gradient descent optimization model to generate the better unified low dimensional embedding. The proposed method is compared with several single-view and multi-view dimensional reduction methods in these indicators of P, R, MAP and F-measure. In the retrieval experiments, the P values of the newmethod respectively are 86.80%, 52.00%, 68.56% and 78.80% on datasets of Corel1k, Corel5k, Corel10k and Holidays. In the classification experiments, the mean accuracies of it respectively are 47.94% and 87.58% on datasets of Caltech101 and Coil. These values are higher than those obtained by other comparison methods, various evaluations based on the applications of image classification and retrieval demonstrates the effectiveness of our proposed method on multi-view feature fusion dimension reduction." @default.
- W3163928181 created "2021-05-24" @default.
- W3163928181 creator A5046805800 @default.
- W3163928181 creator A5058734404 @default.
- W3163928181 creator A5067114555 @default.
- W3163928181 creator A5069159563 @default.
- W3163928181 date "2021-01-01" @default.
- W3163928181 modified "2023-09-24" @default.
- W3163928181 title "A Multi-View Fusion Method via Tensor Learning and Gradient Descent for Image Features" @default.
- W3163928181 cites W1532257412 @default.
- W3163928181 cites W1992148734 @default.
- W3163928181 cites W2053186076 @default.
- W3163928181 cites W2075175620 @default.
- W3163928181 cites W2096171208 @default.
- W3163928181 cites W2166782149 @default.
- W3163928181 cites W2186500555 @default.
- W3163928181 cites W2289354478 @default.
- W3163928181 cites W2315643162 @default.
- W3163928181 cites W2337778271 @default.
- W3163928181 cites W2484332996 @default.
- W3163928181 cites W2499468060 @default.
- W3163928181 cites W2741685884 @default.
- W3163928181 cites W2752351835 @default.
- W3163928181 cites W2768166594 @default.
- W3163928181 cites W2801973746 @default.
- W3163928181 cites W2802578678 @default.
- W3163928181 cites W2807472804 @default.
- W3163928181 cites W2888747523 @default.
- W3163928181 cites W2900778510 @default.
- W3163928181 cites W2906580494 @default.
- W3163928181 cites W2908622466 @default.
- W3163928181 cites W2924265785 @default.
- W3163928181 cites W2944195984 @default.
- W3163928181 cites W2944573973 @default.
- W3163928181 cites W2954810543 @default.
- W3163928181 cites W2955111744 @default.
- W3163928181 cites W2957705595 @default.
- W3163928181 cites W2963561713 @default.
- W3163928181 cites W2965797248 @default.
- W3163928181 cites W2967266701 @default.
- W3163928181 cites W2982471955 @default.
- W3163928181 cites W2987972768 @default.
- W3163928181 cites W3004244740 @default.
- W3163928181 cites W3005001078 @default.
- W3163928181 cites W3015232403 @default.
- W3163928181 cites W3021068195 @default.
- W3163928181 cites W3024343454 @default.
- W3163928181 cites W3043613541 @default.
- W3163928181 cites W3083388823 @default.
- W3163928181 cites W3085297480 @default.
- W3163928181 cites W3097921827 @default.
- W3163928181 cites W3099920683 @default.
- W3163928181 cites W3115462576 @default.
- W3163928181 cites W3129243067 @default.
- W3163928181 cites W3152332785 @default.
- W3163928181 doi "https://doi.org/10.1109/access.2021.3079499" @default.
- W3163928181 hasPublicationYear "2021" @default.
- W3163928181 type Work @default.
- W3163928181 sameAs 3163928181 @default.
- W3163928181 citedByCount "2" @default.
- W3163928181 countsByYear W31639281812022 @default.
- W3163928181 countsByYear W31639281812023 @default.
- W3163928181 crossrefType "journal-article" @default.
- W3163928181 hasAuthorship W3163928181A5046805800 @default.
- W3163928181 hasAuthorship W3163928181A5058734404 @default.
- W3163928181 hasAuthorship W3163928181A5067114555 @default.
- W3163928181 hasAuthorship W3163928181A5069159563 @default.
- W3163928181 hasConcept C115961682 @default.
- W3163928181 hasConcept C138885662 @default.
- W3163928181 hasConcept C153258448 @default.
- W3163928181 hasConcept C154945302 @default.
- W3163928181 hasConcept C155281189 @default.
- W3163928181 hasConcept C158525013 @default.
- W3163928181 hasConcept C2524010 @default.
- W3163928181 hasConcept C31972630 @default.
- W3163928181 hasConcept C33923547 @default.
- W3163928181 hasConcept C41008148 @default.
- W3163928181 hasConcept C41895202 @default.
- W3163928181 hasConcept C50644808 @default.
- W3163928181 hasConcept C69744172 @default.
- W3163928181 hasConceptScore W3163928181C115961682 @default.
- W3163928181 hasConceptScore W3163928181C138885662 @default.
- W3163928181 hasConceptScore W3163928181C153258448 @default.
- W3163928181 hasConceptScore W3163928181C154945302 @default.
- W3163928181 hasConceptScore W3163928181C155281189 @default.
- W3163928181 hasConceptScore W3163928181C158525013 @default.
- W3163928181 hasConceptScore W3163928181C2524010 @default.
- W3163928181 hasConceptScore W3163928181C31972630 @default.
- W3163928181 hasConceptScore W3163928181C33923547 @default.
- W3163928181 hasConceptScore W3163928181C41008148 @default.
- W3163928181 hasConceptScore W3163928181C41895202 @default.
- W3163928181 hasConceptScore W3163928181C50644808 @default.
- W3163928181 hasConceptScore W3163928181C69744172 @default.
- W3163928181 hasFunder F4320313891 @default.
- W3163928181 hasLocation W31639281811 @default.
- W3163928181 hasLocation W31639281812 @default.
- W3163928181 hasOpenAccess W3163928181 @default.
- W3163928181 hasPrimaryLocation W31639281811 @default.